Answer to Question #159367 in Calculus for effa

Question #159367

find yy, when y=sinxcosxy= sin x - cos x


1
Expert's answer
2021-02-01T05:45:05-0500

Solution:

ThecompoundperiodicityofthesumofperiodicfunctionsistheleastcommonmultiplieroftheperiodsThe\:compound\:periodicity\:of\:the\:sum\:of\:periodic\:functions\:is\:the\:least\:\\common\:multiplier\:of\:the\:periods


Periodicity  of  sin(x):  2πPeriodicity  of  cos(x):  2πPeriodicity\;of\;sin(x):\;2\pi\\Periodicity\;of\;cos(x):\;2\pi



Domainofsin(x)cos(x):[Solution:<x<IntervalNotation:(,)]\mathrm{Domain\:of\:}\:\sin \left(x\right)-\cos \left(x\right)\::\begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}



Rangeofsin(x)cos(x):[Solution:2f(x)2IntervalNotation:[2,2]]\mathrm{Range\:of\:}\sin \left(x\right)-\cos \left(x\right):\\\begin{bmatrix}\mathrm{Solution:}\:&\:-\sqrt{2}\le \:f\left(x\right)\le \sqrt{2}\:\\ \:\mathrm{Interval\:Notation:}&\:\left[-\sqrt{2},\:\sqrt{2}\right]\end{bmatrix}



Axisinterceptionpointsofsin(x)cos(x):XIntercepts:(π4+2πn,0),(5π4+2πn,0),YIntercepts:(0,1)\mathrm{Axis\:interception\:points\:of}\:\sin \left(x\right)-\cos \left(x\right):\quad \mathrm{X\:Intercepts}:\:\left(\frac{\pi }{4}+2\pi n,\:0\right),\:\left(\frac{5\pi }{4}+2\pi n,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:-1\right)







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment