Question #159102

Given g(x)= (x^2)/(x^2-4)

a) Find all critical values for 𝑔(π‘₯).


b) Find 𝑔 β€²β€²(π‘₯). Then, use your answers from part (a) and the 2nd derivative test to determine if each critical value represents a relative maximum, minimum, or neither


c) On what interval(s), if any, is 𝑔(π‘₯) concave down. Justify.


1
Expert's answer
2021-01-29T05:09:41-0500

Consider the function g(x)=x2x2βˆ’4g(x)= \frac{x^2}{x^2-4}


a) Let us find the derivative of g(x):g(x):


gβ€²(x)=2x(x2βˆ’4)βˆ’x22x(x2βˆ’4)2=βˆ’8x(x2βˆ’4)2g'(x)=\frac{2x(x^2-4)-x^22x}{(x^2-4)^2}=-8\frac{x}{(x^2-4)^2}


In the points βˆ’2-2 and 22 the function g(x)g(x) doesn’t exist. If gβ€²(x)=0g'(x)=0, then x=0.x=0. Therefore, x=0x=0 is a critical value for 𝑔(π‘₯)𝑔(π‘₯).


b) Let us find 𝑔′′(π‘₯)𝑔''(π‘₯):


gβ€²β€²(x)=(βˆ’8x(x2βˆ’4)2)β€²=βˆ’8(x2βˆ’4)2βˆ’xβ‹…2(x2βˆ’4)2x(x2βˆ’4)4=βˆ’8x2βˆ’4βˆ’4x2(x2βˆ’4)3=83x2+4(x2βˆ’4)3g''(x)=(-8\frac{x}{(x^2-4)^2})'=-8\frac{(x^2-4)^2-x\cdot 2(x^2-4)2x}{(x^2-4)^4}= -8\frac{x^2-4-4x^2}{(x^2-4)^3}=8\frac{3x^2+4}{(x^2-4)^3}


Since gβ€²β€²(0)=βˆ’0.5<0g''(0)=-0.5<0, we conclude that the critical value x=0x=0 represents a relative maximum.


c) Since gβ€²β€²(x)<0g''(x)<0 for x∈(βˆ’2,2)x\in(-2,2), we conclude that on the interval (βˆ’2,2)(-2,2) the function 𝑔(π‘₯)𝑔(π‘₯) is concave down.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS