To show that d/dz(sin z) = cos z
"Solution:\\\\Method ~1:\n\\\\To Prove:\\frac{d}{dz}(sin ~z)=cos ~z ~,where~z=x+iy\n\\\\We~know~that~ f(x+iy)=u(x,y)+iv(x,y)\n\\\\Let~f(z)=sin~z\n \\\\~~~~~~~~~~~~~~~~=sin ~(x+iy)\n\\\\~~~~~~~~~~~~~~~~=sin~x~cos(iy)~+~cos ~x~sin(iy)......................(I)\n\\\\Now ~we~ will ~find~ cos(iy)~and ~sin( iy )\n\\\\cos(iy)=\\frac{e^{i(iy)+e^{-i(iy)}}}{2}=\\frac{e^{-y}+e^y}{2}=\\frac{e^y+e^{-y}}{2}=cos(hy)\n\\\\ [since~i.i=i^2=-1~ and~-i.i=-i^2=-(-1)=1~]\n\\\\sin(iy)=\\frac{e^{i(iy)-e^{-i(iy)}}}{2i}=\\frac{e^{-y}-e^y}{2i}=i ~sin (hy)\n\\\\Now~ we ~put ~ values ~of ~cos(iy)~and ~sin(iy)~in ~equation ~(I),\n\\\\\\therefore f(z)=sin~x~( cos(hy))~+~cos ~x~(i~sin(hy))\\\\~~~~~~~~~~~~=sin~x~( cos(hy))~+i~(cos ~x~ sin(hy))\n\\\\Now~\\frac{d}{dz}(sin~z)=\\frac{d}{dz}[sin~x~( cos(hy))~+i~cos ~x~(sin(hy))]\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~=cos~x(cos(hy))+i~sin~~x(sin(hy))\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~=cos~x(cos(hy))+sin~x(i~sin(hy))\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~=cos~x(cos(iy))+sin~x(sin(iy))\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~=cos~x(cos(iy))-sin~x(sin(iy))\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~=cos(x+iy)\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~=cos~z\n\\\\Method ~2: \n\\\\\\frac{d}{dx}(sin ~z)=\\frac{d}{dz}[\\frac{e^{iz}-e^{-iz}}{2i}]=\\frac{ie^{iz}+ie^{-iz}}{2i}=\\frac{e^{iz}+e^{-iz}}{2}=cos~z"
Comments
Leave a comment