Expand e
ax cos bx by Maclaurins theorem. Hence prove that
e
x cos α
cos(x sin α) = 1 + x cos α +
x
2
2!
cos 2α +
x
3
3!
cos 3α + ⋯ ...
"Solution: By~ Maclurin's~ theorem, We~ have\n\\\\y=(y)_0+\\frac{x}{1!}(y_1)_0+\\frac{x^2}{2!}(y_2)_0+\\frac{x^3}{3!}(y_3)_0+ \\frac{x^4}{4!}(y_4)_0+..........(1)\n\\\\or\n\\\\f(x)=f(0)+\\frac{x}{1!}f'(0)+ \\frac{x^2}{2!}f''(0)+ \\frac{x^3}{3!}f'''(0)+\\frac{x^4}{4!!}f'''''(0)+...........\\frac{x^n}{n!}f^n(0)"
"\\\\Now~we~have ~to~find ~(y)_0,(y_1)_0 ~and~so~on... \n\\\\ y=e^{ax}cos(bx) ~\\Rightarrow (y)_0=e^{a(0)}cos ~(b(0))=1\n\\\\(y_1)=ae^{ax}cos(bx)+e^{ax}(-b ~sin(bx))=ae^{ax}cos(bx)-e^{ax}(b ~sin(bx))\n\\\\ \\therefore y_1=ay-be^{ax}sin(bx)\n\\\\ \\Rightarrow (y_1)_0=a(1)-be^{a(0)}sin(0)=a"
"y_2=ay_1-(abe^{ax}sin(bx)+e^{ax}b^2cos(bx))\n\\\\~~~~~=ay_1-abe^{ax}sin(bx)-e^{ax}b^2cos(bx)\n\\\\~~~~~=ay_1-abe^{ax}sin(bx)-b^2e^{ax}cos(bx)\n\\\\~=ay_1-a(ay-y_1)-b^2y[Since~y_1=ay-be^{ax}sin(bx) ~\\Rightarrow be^{ax}sin(bx)=ay-y_1 ] \n \\\\~=ay_1-a^2y-ay_1-b^2y\n\n \\\\~=2ay_1-(a^2+b^2)y\n\\\\ \\Rightarrow ~(y_2)_0=2a(a)-(a^2+b^2)(1)=2a^2-a^2-b^2=a^2-b^2"
"y_3=2ay_2-(a^2+b^2)y_1\n\\\\ \\Rightarrow (y_3)_0=2a(a^2-b^2)-(a^2+b^2)a=2a^3-2ab^2-a^3-ab^2=a^3-3ab^2\n\\\\ \\Rightarrow (y_3)_0=a(a^2-3b^2)\n\\\\Smilarly ~we~ can~ find~ next~ derivatives ~at ~point~ 0\n\\\\Putting ~all~ these~ values~ in~ Maclurin's ~Theorem~i.e. ~in~equation~(1),"
"y=(y)_0+\\frac{x}{1!}(y_1)_0+\\frac{x^2}{2!}(y_2)_0+\\frac{x^3}{3!}(y_3)_0+ \\frac{x^4}{4!}(y_4)_0+.......\n\\\\\\therefore e^{ax} cos(bx)=1+\\frac{x}{1!}(a)+\\frac{x^2}{2!}(a^2-b^2)+\\frac{x^3}{3!}a(a^2-3b^2)+....\n\\\\~~~~e^{ax} cos(bx)=1+\\frac{a}{1!}(x)+\\frac{a^2-b^2}{2!}(x^2)+\\frac{a(a^2-3b^2)}{3!}x^3+.............(2)"
"Hence~we~proved~the~ first~part~of~the~example.\n\\\\Now~to~prove~the~ second ~part~of~the~example~we~put~ a=cos~\\alpha~and ~b=sin~\\alpha~in~equation~(2)\n\\\\e^{x~cos~\\alpha } cos(x~sin~\\alpha )=1+\\frac{cos~\\alpha}{1!}(x)+\\frac{cos^2~\\alpha-sin^2~\\alpha}{2!}(x^2)+\\frac{cos~\\alpha(cos^2~\\alpha-3sin^2~\\alpha)}{3!}x^3+.............\n\\\\Simplifying , we~ get\n\\\\\\\\e^{x~cos~\\alpha } cos(x~sin~\\alpha )=1+x~cos~\\alpha+\\frac{x^2}{2!}(cos~2\\alpha)+\\frac{x^3}{3!}(cos~3\\alpha)+.............\n\\\\Hence~ proved."
Comments
Leave a comment