Solution:By Maclurin′s theorem,We havey=(y)0+1!x(y1)0+2!x2(y2)0+3!x3(y3)0+4!x4(y4)0+..........(1)orf(x)=f(0)+1!xf′(0)+2!x2f′′(0)+3!x3f′′′(0)+4!!x4f′′′′′(0)+...........n!xnfn(0)
Now we have to find (y)0,(y1)0 and so on...y=eaxcos(bx) ⇒(y)0=ea(0)cos (b(0))=1(y1)=aeaxcos(bx)+eax(−b sin(bx))=aeaxcos(bx)−eax(b sin(bx))∴y1=ay−beaxsin(bx)⇒(y1)0=a(1)−bea(0)sin(0)=a
y2=ay1−(abeaxsin(bx)+eaxb2cos(bx)) =ay1−abeaxsin(bx)−eaxb2cos(bx) =ay1−abeaxsin(bx)−b2eaxcos(bx) =ay1−a(ay−y1)−b2y[Since y1=ay−beaxsin(bx) ⇒beaxsin(bx)=ay−y1] =ay1−a2y−ay1−b2y =2ay1−(a2+b2)y⇒ (y2)0=2a(a)−(a2+b2)(1)=2a2−a2−b2=a2−b2
y3=2ay2−(a2+b2)y1⇒(y3)0=2a(a2−b2)−(a2+b2)a=2a3−2ab2−a3−ab2=a3−3ab2⇒(y3)0=a(a2−3b2)Smilarly we can find next derivatives at point 0Putting all these values in Maclurin′s Theorem i.e. in equation (1),
y=(y)0+1!x(y1)0+2!x2(y2)0+3!x3(y3)0+4!x4(y4)0+.......∴eaxcos(bx)=1+1!x(a)+2!x2(a2−b2)+3!x3a(a2−3b2)+.... eaxcos(bx)=1+1!a(x)+2!a2−b2(x2)+3!a(a2−3b2)x3+.............(2)
Hence we proved the first part of the example.Now to prove the second part of the example we put a=cos α and b=sin α in equation (2)ex cos αcos(x sin α)=1+1!cos α(x)+2!cos2 α−sin2 α(x2)+3!cos α(cos2 α−3sin2 α)x3+.............Simplifying,we getex cos αcos(x sin α)=1+x cos α+2!x2(cos 2α)+3!x3(cos 3α)+.............Hence proved.
Comments