Question #156891

Expand e


ax cos bx by Maclaurins theorem. Hence prove that

e

x cos α

cos(x sin α) = 1 + x cos α +

x

2

2!

cos 2α +

x

3

3!

cos 3α + ⋯ ...


1
Expert's answer
2021-01-25T12:31:26-0500

Solution:By Maclurins theorem,We havey=(y)0+x1!(y1)0+x22!(y2)0+x33!(y3)0+x44!(y4)0+..........(1)orf(x)=f(0)+x1!f(0)+x22!f(0)+x33!f(0)+x44!!f(0)+...........xnn!fn(0)Solution: By~ Maclurin's~ theorem, We~ have \\y=(y)_0+\frac{x}{1!}(y_1)_0+\frac{x^2}{2!}(y_2)_0+\frac{x^3}{3!}(y_3)_0+ \frac{x^4}{4!}(y_4)_0+..........(1) \\or \\f(x)=f(0)+\frac{x}{1!}f'(0)+ \frac{x^2}{2!}f''(0)+ \frac{x^3}{3!}f'''(0)+\frac{x^4}{4!!}f'''''(0)+...........\frac{x^n}{n!}f^n(0)

Now we have to find (y)0,(y1)0 and so on...y=eaxcos(bx) (y)0=ea(0)cos (b(0))=1(y1)=aeaxcos(bx)+eax(b sin(bx))=aeaxcos(bx)eax(b sin(bx))y1=aybeaxsin(bx)(y1)0=a(1)bea(0)sin(0)=a\\Now~we~have ~to~find ~(y)_0,(y_1)_0 ~and~so~on... \\ y=e^{ax}cos(bx) ~\Rightarrow (y)_0=e^{a(0)}cos ~(b(0))=1 \\(y_1)=ae^{ax}cos(bx)+e^{ax}(-b ~sin(bx))=ae^{ax}cos(bx)-e^{ax}(b ~sin(bx)) \\ \therefore y_1=ay-be^{ax}sin(bx) \\ \Rightarrow (y_1)_0=a(1)-be^{a(0)}sin(0)=a


y2=ay1(abeaxsin(bx)+eaxb2cos(bx))     =ay1abeaxsin(bx)eaxb2cos(bx)     =ay1abeaxsin(bx)b2eaxcos(bx) =ay1a(ayy1)b2y[Since y1=aybeaxsin(bx) beaxsin(bx)=ayy1] =ay1a2yay1b2y =2ay1(a2+b2)y (y2)0=2a(a)(a2+b2)(1)=2a2a2b2=a2b2y_2=ay_1-(abe^{ax}sin(bx)+e^{ax}b^2cos(bx)) \\~~~~~=ay_1-abe^{ax}sin(bx)-e^{ax}b^2cos(bx) \\~~~~~=ay_1-abe^{ax}sin(bx)-b^2e^{ax}cos(bx) \\~=ay_1-a(ay-y_1)-b^2y[Since~y_1=ay-be^{ax}sin(bx) ~\Rightarrow be^{ax}sin(bx)=ay-y_1 ] \\~=ay_1-a^2y-ay_1-b^2y \\~=2ay_1-(a^2+b^2)y \\ \Rightarrow ~(y_2)_0=2a(a)-(a^2+b^2)(1)=2a^2-a^2-b^2=a^2-b^2


y3=2ay2(a2+b2)y1(y3)0=2a(a2b2)(a2+b2)a=2a32ab2a3ab2=a33ab2(y3)0=a(a23b2)Smilarly we can find next derivatives at point 0Putting all these values in Maclurins Theorem i.e. in equation (1),y_3=2ay_2-(a^2+b^2)y_1 \\ \Rightarrow (y_3)_0=2a(a^2-b^2)-(a^2+b^2)a=2a^3-2ab^2-a^3-ab^2=a^3-3ab^2 \\ \Rightarrow (y_3)_0=a(a^2-3b^2) \\Smilarly ~we~ can~ find~ next~ derivatives ~at ~point~ 0 \\Putting ~all~ these~ values~ in~ Maclurin's ~Theorem~i.e. ~in~equation~(1),

y=(y)0+x1!(y1)0+x22!(y2)0+x33!(y3)0+x44!(y4)0+.......eaxcos(bx)=1+x1!(a)+x22!(a2b2)+x33!a(a23b2)+....    eaxcos(bx)=1+a1!(x)+a2b22!(x2)+a(a23b2)3!x3+.............(2)y=(y)_0+\frac{x}{1!}(y_1)_0+\frac{x^2}{2!}(y_2)_0+\frac{x^3}{3!}(y_3)_0+ \frac{x^4}{4!}(y_4)_0+....... \\\therefore e^{ax} cos(bx)=1+\frac{x}{1!}(a)+\frac{x^2}{2!}(a^2-b^2)+\frac{x^3}{3!}a(a^2-3b^2)+.... \\~~~~e^{ax} cos(bx)=1+\frac{a}{1!}(x)+\frac{a^2-b^2}{2!}(x^2)+\frac{a(a^2-3b^2)}{3!}x^3+.............(2)


Hence we proved the first part of the example.Now to prove the second part of the example we put a=cos α and b=sin α in equation (2)ex cos αcos(x sin α)=1+cos α1!(x)+cos2 αsin2 α2!(x2)+cos α(cos2 α3sin2 α)3!x3+.............Simplifying,we getex cos αcos(x sin α)=1+x cos α+x22!(cos 2α)+x33!(cos 3α)+.............Hence proved.Hence~we~proved~the~ first~part~of~the~example. \\Now~to~prove~the~ second ~part~of~the~example~we~put~ a=cos~\alpha~and ~b=sin~\alpha~in~equation~(2) \\e^{x~cos~\alpha } cos(x~sin~\alpha )=1+\frac{cos~\alpha}{1!}(x)+\frac{cos^2~\alpha-sin^2~\alpha}{2!}(x^2)+\frac{cos~\alpha(cos^2~\alpha-3sin^2~\alpha)}{3!}x^3+............. \\Simplifying , we~ get \\\\e^{x~cos~\alpha } cos(x~sin~\alpha )=1+x~cos~\alpha+\frac{x^2}{2!}(cos~2\alpha)+\frac{x^3}{3!}(cos~3\alpha)+............. \\Hence~ proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS