Solution
v0x = 5, v0y = 29
Velocity at any time t: vx(t) = v0x, vy(t) = v0y - gt (g - acceleration earth gravity)
Therefore x(t) = v0x *t, y(t) = v0y*t - g*t2/2
A projectile pass height h = 20 at the time which satisfy equation h = v0y*t - g*t2/2
t1,2 = (v0y ±√( v0y2 – 2gh))/g
t1 = (v0y -√( v0y2 – 2gh))/g = 0.797 s, t2 = (v0y +√( v0y2 – 2gh))/g = 5.117 s
So x1 = v0x *t1 = 3.985 m, Â x2 = v0x *t2 = 25.586 m
v1x = v0x = 5 m/s,   v1y = v0y – gt1  = 21.183 m/s, v1 = √( v1x2 + v1y2 ) = 21.765 m/s
v2x = v0x = 5 m/s,   v2y = v0y – gt2  = -21.183 m/s, v2 = √( v2x2 + v2y2 ) = 21.765 m/s
Answer
x1 = 3.985 m, x2 = 25.586 m
v1x = 5 m/s,  v1y = 21.183 m/s, v1 = 21.765 m/s
v2x = 5 m/s,  v2y = -21.183 m/s, v2 = 21.765 m/s
Comments
Leave a comment