At the point (1,2) on the curve 4x²+2xy+y²=2 dy/dx = ? and d²y/dx² = ?
Differentiating we get, "8x dx+2y dx +2xdy+2ydy=0". Hence "(x+y)dy=-(y+4x)dx." Hence "dy\/dx=-\\frac{y+4x}{x+y}."
Hence "d^2y\/dx^2=" "-\\frac{(dy\/dx+4)(x+y)-(y+4x)(1+dy\/dx)}{(x+y)^2 }" . Putting the value of "dy\/dx" we get,
"-\\frac{3y^2+12x^2+6xy}{(x+y)^3}" .
Comments
Leave a comment