Use double integrals and polar coordinates to find the volume of the solid that lies inside the graph of both x²+y²=1 and x²+y²+z²=9
x=rcosθ,y=rcosθ,z=z,dV=rdzdrdθvolume(E)=∭E1dV=∫02π∫13∫−9−r29−r2rdzdrdθ=∫02pi∫1e2r9−r2drdθ=∫02π−23(9−r2)3/2∣r=1r=3dθ=∫02π3223dθ=64π23\begin{aligned} x=& r \cos \theta, \quad y=r \cos \theta, \quad z=z, \quad d V=r d z d r d \theta \\ \operatorname{volume}(E) &=\iiint_{E} 1 d V=\int_{0}^{2 \pi} \int_{1}^{3} \int_{-\sqrt{9-r^{2}}}^{\sqrt{9-r^{2}}} r d z d r d \theta \\ &=\int_{0}^{2 p i} \int_{1}^{e} 2 r \sqrt{9-r^{2}} d r d \theta=\left.\int_{0}^{2 \pi} \frac{-2}{3}\left(9-r^{2}\right)^{3 / 2}\right|_{r=1} ^{r=3} d \theta \\ &=\int_{0}^{2 \pi} \frac{32 \sqrt{2}}{3} d \theta=\frac{64 \pi \sqrt{2}}{3} \end{aligned}x=volume(E)rcosθ,y=rcosθ,z=z,dV=rdzdrdθ=∭E1dV=∫02π∫13∫−9−r29−r2rdzdrdθ=∫02pi∫1e2r9−r2drdθ=∫02π3−2(9−r2)3/2∣∣r=1r=3dθ=∫02π3322dθ=364π2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments