The base diameter and altitude of a right circular cone are observed at a certain instant to be 10 and 20 inches, respectively. If the lateral area is constant and the base diameter is increasing at a rate of 1 inch per minute, find the rate at which the altitude is decreasing.
"Solution: Let ~r ~be~ diameter~ and~ h~ be~ the~ altitude~ of~ the~ right~ circular ~~cone.\n\\\\Then~ lateral ~area ~of~ right ~circular~ cone~ is ~=A=\u03c0r\\sqrt{h^2+r\u200b\u200b\u200b\u200b\u200b\u200b^r}"
"Differentiate ~~implicitly~ with ~respect~ to ~t\n\\\\\\frac{d}{dt}(A)=\\frac{d}{dt}(\u03c0r\\sqrt{h^2+r\u200b\u200b\u200b\u200b\u200b\u200b^r})"
"\\Rightarrow \\frac{dA}{dt}=\\frac{\\pi}{2}[\\frac{r^2}{2}\\frac{1}{2}\\sqrt{(\\frac{r^2}{2}+h^2)(r\\frac{dr}{dt}+2h\\frac{dh}{dt})}+\\sqrt{\\frac{r^2}{2}+h^2r\\frac{dr}{dt}}] ...................................(I)"
"Given~that~\\frac{dA}{dt}=0. Also ~r=10~inches~and~h~=20~inches~and~ \\frac{dr}{dt}=0"
"Put~ all ~values ~in ~equation~ (I),then ~we~ get,\n\\\\351.87+74.09\\frac{dh}{dt}=0\n\\\\74.09\\frac{dh}{dt}=-351.87\n\\\\\\frac{dh}{dt}=-\\frac{351.87}{74.09}\n\\\\\\frac{dh}{dt}=-4.75\n\\\\Negative ~sign~ indicates~ that~ altitude ~is ~decreasing.\n\\\\Thus,~the~ rate ~at~ which ~altitude ~is~ decreasing ~be ~4.75~ per ~minute."
Comments
Leave a comment