S o l u t i o n : L e t r b e d i a m e t e r a n d h b e t h e a l t i t u d e o f t h e r i g h t c i r c u l a r c o n e . T h e n l a t e r a l a r e a o f r i g h t c i r c u l a r c o n e i s = A = π r h 2 + r r Solution: Let ~r ~be~ diameter~ and~ h~ be~ the~ altitude~ of~ the~ right~ circular ~~cone.
\\Then~ lateral ~area ~of~ right ~circular~ cone~ is ~=A=πr\sqrt{h^2+r^r} S o l u t i o n : L e t r b e d iam e t er an d h b e t h e a lt i t u d e o f t h e r i g h t c i rc u l a r co n e . T h e n l a t er a l a re a o f r i g h t c i rc u l a r co n e i s = A = π r h 2 + r r
D i f f e r e n t i a t e i m p l i c i t l y w i t h r e s p e c t t o t d d t ( A ) = d d t ( π r h 2 + r r ) Differentiate ~~implicitly~ with ~respect~ to ~t
\\\frac{d}{dt}(A)=\frac{d}{dt}(πr\sqrt{h^2+r^r}) D i ff ere n t ia t e im pl i c i tl y w i t h res p ec t t o t d t d ( A ) = d t d ( π r h 2 + r r )
⇒ d A d t = π 2 [ r 2 2 1 2 ( r 2 2 + h 2 ) ( r d r d t + 2 h d h d t ) + r 2 2 + h 2 r d r d t ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( I ) \Rightarrow \frac{dA}{dt}=\frac{\pi}{2}[\frac{r^2}{2}\frac{1}{2}\sqrt{(\frac{r^2}{2}+h^2)(r\frac{dr}{dt}+2h\frac{dh}{dt})}+\sqrt{\frac{r^2}{2}+h^2r\frac{dr}{dt}}] ...................................(I) ⇒ d t d A = 2 π [ 2 r 2 2 1 ( 2 r 2 + h 2 ) ( r d t d r + 2 h d t d h ) + 2 r 2 + h 2 r d t d r ] ................................... ( I )
G i v e n t h a t d A d t = 0. A l s o r = 10 i n c h e s a n d h = 20 i n c h e s a n d d r d t = 0 Given~that~\frac{dA}{dt}=0. Also ~r=10~inches~and~h~=20~inches~and~ \frac{dr}{dt}=0 G i v e n t ha t d t d A = 0. A l so r = 10 in c h es an d h = 20 in c h es an d d t d r = 0
P u t a l l v a l u e s i n e q u a t i o n ( I ) , t h e n w e g e t , 351.87 + 74.09 d h d t = 0 74.09 d h d t = − 351.87 d h d t = − 351.87 74.09 d h d t = − 4.75 N e g a t i v e s i g n i n d i c a t e s t h a t a l t i t u d e i s d e c r e a s i n g . T h u s , t h e r a t e a t w h i c h a l t i t u d e i s d e c r e a s i n g b e 4.75 p e r m i n u t e . Put~ all ~values ~in ~equation~ (I),then ~we~ get,
\\351.87+74.09\frac{dh}{dt}=0
\\74.09\frac{dh}{dt}=-351.87
\\\frac{dh}{dt}=-\frac{351.87}{74.09}
\\\frac{dh}{dt}=-4.75
\\Negative ~sign~ indicates~ that~ altitude ~is ~decreasing.
\\Thus,~the~ rate ~at~ which ~altitude ~is~ decreasing ~be ~4.75~ per ~minute. P u t a ll v a l u es in e q u a t i o n ( I ) , t h e n w e g e t , 351.87 + 74.09 d t d h = 0 74.09 d t d h = − 351.87 d t d h = − 74.09 351.87 d t d h = − 4.75 N e g a t i v e s i g n in d i c a t es t ha t a lt i t u d e i s d ecre a s in g . T h u s , t h e r a t e a t w hi c h a lt i t u d e i s d ecre a s in g b e 4.75 p er min u t e .
Comments
Leave a comment