Limit x approach infinity x[ ( 1 + a/x )^ 1+ 1/x - x^-1/x ( x+ a ) ]
"\\lim \\limits_{x\\to \\infty} x[ ( 1 + \\frac{a}{x} )+ \\frac{1}{x} - \\frac{x^{-1}}{x} ( x+ a ) ]=""\\lim \\limits_{x\\to \\infty} [ ( x + a )+ 1 - ( 1+ \\frac{a}{x} ) ]=" "\\lim \\limits_{x\\to \\infty} [ x + a - \\frac{a}{x} ]=\\infty"
As we know "\\lim \\limits_{x\\to \\infty} \\frac{1}{x}=0" and "\\lim \\limits_{x\\to \\infty} x=\\infty". so the expression increases indefinitely.
Comments
Leave a comment