Answer to Question #154888 in Calculus for Ojugbele Daniel

Question #154888

Limit x approach infinity x[ ( 1 + a/x )^ 1+ 1/x - x^-1/x ( x+ a ) ]


1
Expert's answer
2021-01-12T14:49:41-0500

limxx[(1+ax)+1xx1x(x+a)]=\lim \limits_{x\to \infty} x[ ( 1 + \frac{a}{x} )+ \frac{1}{x} - \frac{x^{-1}}{x} ( x+ a ) ]=limx[(x+a)+1(1+ax)]=\lim \limits_{x\to \infty} [ ( x + a )+ 1 - ( 1+ \frac{a}{x} ) ]= limx[x+aax]=\lim \limits_{x\to \infty} [ x + a - \frac{a}{x} ]=\infty

As we know limx1x=0\lim \limits_{x\to \infty} \frac{1}{x}=0 and limxx=\lim \limits_{x\to \infty} x=\infty. so the expression increases indefinitely.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment