Question #154766

A window consists of a rectangle surmounted by semi-circle. What shape gives the most area for a given perimeter?


1
Expert's answer
2021-01-19T02:21:09-0500

Let us skerch a picture of such a window:




Let aa and bb be lengths of a corresponding rectangle. Then the surmounted semi-circle is of radius a2\frac{a}{2}.

The perimeter of the figure is P=2b+a+πa2=2b+2+π2aP=2b+a+\frac{\pi a}{2}=2b+\frac{2+\pi}{2}a and the area is S=ab+12π(a2)2=ab+πa28.S=ab+\frac{1}{2}\pi(\frac{a}{2})^2=ab+\frac{\pi a^2}{8}. It follows that b=P22+π4ab=\frac{P}{2}-\frac{2+\pi}{4}a and therefore, S=a(P22+π4a)+πa28=P2a2+π4a2+πa28=P2a4+π8a2S=a(\frac{P}{2}-\frac{2+\pi}{4}a)+\frac{\pi a^2}{8}=\frac{P}{2}a-\frac{2+\pi}{4}a^2+\frac{\pi a^2}{8} =\frac{P}{2}a-\frac{4+\pi}{8}a^2. Since the perimeter is constant, S=P24+π4aS'=\frac{P}{2}-\frac{4+\pi}{4}a. If S=0,S'=0, then P24+π4a=0\frac{P}{2}-\frac{4+\pi}{4}a=0, and thus a=2P4+πa=\frac{2P}{4+\pi}. Taking into account that S=4+π4<0S''=-\frac{4+\pi}{4}<0, we conclude that a=2P4+πa=\frac{2P}{4+\pi} is a point of maximum of SS. It follows that b=P22+π42P4+π=P2(2+π)P2(4+π)=4P+πP2PπP2(4+π)=P4+πb=\frac{P}{2}-\frac{2+\pi}{4}\frac{2P}{4+\pi}=\frac{P}{2}-\frac{(2+\pi)P}{2(4+\pi)}=\frac{4P+\pi P-2P-\pi P}{2(4+\pi)}=\frac{P}{4+\pi}, and thus a=2ba=2b. We conclude that for b=P4+πb=\frac{P}{4+\pi} and a=2b=2P4+πa=2b=\frac{2P}{4+\pi} the area is maximum.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS