In spherical coordinates the volume element is dΩ=r2sinθdθdϕd\Omega=r^2\sin\theta d\theta d\phidΩ=r2sinθdθdϕdrdrdr then
∭DcdV=∫02πdϕ∫0πsinθdθ∫0rcr2dr=2π(−cosθ)∣0πcr33=\iiint_{D}cdV=\int_{0}^{2\pi}d\phi\int_{0}^{\pi}\sin\theta d\theta\int_{0}^{r}cr^2dr=2\pi(-\cos\theta)|_0^\pi\frac{cr^3}{3}=∭DcdV=∫02πdϕ∫0πsinθdθ∫0rcr2dr=2π(−cosθ)∣0π3cr3=
=4πcr33=\frac{4\pi cr^3}{3}=34πcr3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments