f(x)=cotx+tanx²-2cosx²
dfdx=−1sin2(x)+2xcos2(x2)−2⋅(−sin(x2)⋅2x)=\frac{df}{dx}=-\frac{1}{sin^2(x)}+\frac{2x}{cos^2(x^2)}-2\cdot (-sin(x^2)\cdot 2x)=dxdf=−sin2(x)1+cos2(x2)2x−2⋅(−sin(x2)⋅2x)=
=−1sin2(x)+2xcos2(x2)+4xsin(x2)=-\frac{1}{sin^2(x)}+\frac{2x}{cos^2(x^2)}+4xsin(x^2)=−sin2(x)1+cos2(x2)2x+4xsin(x2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment