Question #344660

Given the two planes x-y+2z-1=0 and 3x+2y-6z+4=0. Find a parametric equation for the intersection. (4)

1
Expert's answer
2022-05-26T11:23:02-0400
xy+2z1=0x-y+2z-1=03x+2y6z+4=03x+2y-6z+4=0

Set z=0,z=0, solve for xx and yy


xy1=0x-y-1=03x+2y+4=03x+2y+4=0


y=x1y=x-13x+2(x1)+4=03x+2(x-1)+4=0


x=0.4x=-0.4y=1.4y=-1.4

Point (0.4,1.4,0)(-0.4, -1.4, 0)


n1×n2=ijk112326\vec{n_1}\times\vec{n_2}=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1& -1 & 2 \\ 3 & 2 & -6 \end{vmatrix}

=i1226j1236+k1132= \vec{i}\begin{vmatrix} -1 & 2 \\ 2 & -6 \end{vmatrix}- \vec{j}\begin{vmatrix} 1 & 2 \\ 3 & -6 \end{vmatrix}+ \vec{k}\begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix}

=2i+12j+5k=2 \vec{i}+12 \vec{j}+5 \vec{k}

Parametric equation of a line is:


x=0.4+2t,y=1.4+12t,z=5tx=-0.4+2t,\\ y=-1.4+12t, \\z=5t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS