Question #342847

Let vector A=a1i +a2j + a3k and B=b1i + b2j + b3k ne on the same plane. Fine the unit vector perpendicular to both A and B.


1
Expert's answer
2022-05-22T23:46:57-0400
A×B=ijka1a2a3b1b2b3A\times B=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}

=(a2b3a3b2)i+(a3b1a1b3)j+(a1b2a2b1)k=(a_2b_3-a_3 b_2)\vec{i}+(a_3b_1-a_1b_3)\vec{j}+(a_1b_2-a_2b_1)\vec{k}

u=a2b3a3b2(a2b3a3b2)2+(a3b1a1b3)2+(a1b2a2b1)2,\vec {u}=\langle\dfrac{a_2b_3-a_3 b_2}{\sqrt{(a_2b_3-a_3 b_2)^2+(a_3b_1-a_1 b_3)^2+(a_1b_2-a_2 b_1)^2}},


a3b1a1b3(a2b3a3b2)2+(a3b1a1b3)2+(a1b2a2b1)2,\dfrac{a_3b_1-a_1b_3}{\sqrt{(a_2b_3-a_3 b_2)^2+(a_3b_1-a_1 b_3)^2+(a_1b_2-a_2 b_1)^2}},

a1b2a2b1(a2b3a3b2)2+(a3b1a1b3)2+(a1b2a2b1)2\dfrac{a_1b_2-a_2b_1}{\sqrt{(a_2b_3-a_3 b_2)^2+(a_3b_1-a_1 b_3)^2+(a_1b_2-a_2 b_1)^2}}\rangle


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS