Find the position vector of the point in space P that lies on the line AB such that |AP|/|PB|= m/n with m, n is a real number. Find the position vector of P if vector A=(1,2,1), B(3,-1,2), m=3 and n=2
Let "O" be the origin representing the position vectors "\\overrightarrow{OA}" and "\\overrightarrow{OB}" with respect to the two points "A" and "B" . Let "AB" be divided by a third point "P" internally in the ratio "m:n."
"n(\\overrightarrow{OP}-\\overrightarrow{OA})=m(\\overrightarrow{OB}-\\overrightarrow{OP})"
"\\overrightarrow{OP}=\\dfrac{m\\overrightarrow{OB}+n\\overrightarrow{OA}}{n+m}"
Given
"m=3, n=2"
"\\overrightarrow{OP}=\\dfrac{3\\langle1,2,1 \\rangle+2\\langle3,-1,2 \\rangle}{2+3}=\\langle1.8,0.8,1.4 \\rangle"
"\\overrightarrow{OP}=\\langle1.8,0.8,1.4 \\rangle"
Comments
Leave a comment