Express the following surfaces in spherical coordinates (i) yz=2. (ii) y^2+z^2-x^2=1
1 ) "yz=2\\\\"
We know that
"y=r\\sin\u03b8\\sin\u03d5 \\\\\nz=r\\cos{\\theta}"
"yz= r\\sin\u03b8\\sin\u03d5\\ r\\cos{\\theta}\n\\\\=r^2\\sin{\\theta}\\cos{\\theta}\\cos{\\phi}\n\\\\=\\frac{1}{2}r^2\\sin{2\\theta}\\cos{\\phi}"
Now,
"yz=2\n\\\\ \\Rightarrow \\frac{1}{2}r^2\\sin{2\\theta}\\cos{\\phi}=2\n\\\\ \\Rightarrow r^2\\sin{2\\theta}\\cos{\\phi}=4, \\ r>0,\\ \\theta\\in[0,\\pi], \\ \\phi\\in[0,2\\pi]"
2) y2+z2-x2=1
We know that
х=r sinθ cosϕ
y=r sinθ sinϕ
z=r cosθ
y2+z2-x2=r2 sin2θ sin2ϕ + r2 cos2θ - r2 sin2θ cos2ϕ = r2 sin2θ (sin2ϕ -cos2ϕ )+ r2 cos2θ= r2 sin2θ (1- 2cosϕ ) +r2 cos2θ=
=r2 sin2θ - 2r2 sin2θcosϕ +r2 cos2θ = r2 (sin2θ+ cos2θ)- 2r2 sin2θcosϕ = r2 - 2r2 sin2θcosϕ =1
r2 - 2r2 sin2θcosϕ =1 , r>0, θ∈[0,π], ϕ∈[0,2π]
Comments
Leave a comment