Answer to Question #335167 in Analytic Geometry for math

Question #335167

A plane with a velocity 400 km/h, 10 degrees, West of South encounters a wind with a

velocity of 40 km/h, from 35 degrees East of South. What is the plane’s resultant

velocity?


1
Expert's answer
2022-04-29T14:17:06-0400
v=400sin10°i400cos10°j\vec{v}=-400\sin10\degree \vec{i}-400\cos10\degree\vec{j}

u=40sin35°i40cos35°j\vec{u}=40\sin35\degree \vec{i}-40\cos35\degree\vec{j}

vres=v+u\vec{v}_{res}=\vec{v}+\vec{u}

=(400sin10°+40sin35)i=(-400\sin10\degree +40\sin35)\vec{i}

+(400cos10°40cos35°)j+(-400\cos10\degree-40\cos35\degree)\vec{j}

46.5162i426.6892j\approx-46.5162\vec{i}-426.6892\vec{j}

vres=(46.5162)2+(426.6892)2|\vec{v}_{res}|=\sqrt{(-46.5162)^2+(-426.6892)^2}

429.2172(km/h)\approx429.2172(km/h)

tanθ=426.689246.5162\tan \theta=\dfrac{-426.6892}{-46.5162}

θ=264°\theta=264\degree

429.217 km/h, 6 degrees, West of South 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment