A plane with a velocity 400 km/h, 10 degrees, West of South encounters a wind with a
velocity of 40 km/h, from 35 degrees East of South. What is the plane’s resultant
velocity?
"\\vec{u}=40\\sin35\\degree \\vec{i}-40\\cos35\\degree\\vec{j}"
"\\vec{v}_{res}=\\vec{v}+\\vec{u}"
"=(-400\\sin10\\degree +40\\sin35)\\vec{i}"
"+(-400\\cos10\\degree-40\\cos35\\degree)\\vec{j}"
"\\approx-46.5162\\vec{i}-426.6892\\vec{j}"
"|\\vec{v}_{res}|=\\sqrt{(-46.5162)^2+(-426.6892)^2}"
"\\approx429.2172(km\/h)"
"\\tan \\theta=\\dfrac{-426.6892}{-46.5162}"
"\\theta=264\\degree"
429.217 km/h, 6 degrees, West of South
Comments
Leave a comment