Find a unit vector perpendicular to the plane through P(2, 1, -1), Q(-1, 1, 2) and R (1, -1, 2)
"\\overrightarrow{PQ}\\times \\overrightarrow{PR}=\\begin{vmatrix}\n \\vec{i} & \\vec{j} &\\vec{k} \\\\\n -3 & 0 & 3 \\\\\n -1 & -2 & 3 \\\\\n\\end{vmatrix}"
"=\\vec{i}\\begin{vmatrix}\n 0 & 3 \\\\\n -2& 3\n\\end{vmatrix}-\\vec{j}\\begin{vmatrix}\n -3 & 3 \\\\\n -1 & 3\n\\end{vmatrix}+\\vec{k}\\begin{vmatrix}\n -3 & 0 \\\\\n -1 & -2\n\\end{vmatrix}"
"=6\\vec{i}+6\\vec{j}+6\\vec{k}"
"|\\overrightarrow{PQ}\\times \\overrightarrow{PR}|=6\\sqrt{3}"
"\\vec{u}=(\\dfrac{1}{\\sqrt{3}},\\dfrac{1}{\\sqrt{3}},\\dfrac{1}{\\sqrt{3}})"
Comments
Leave a comment