Answer to Question #321487 in Analytic Geometry for Simom

Question #321487

Find a unit vector perpendicular to the plane through P(2, 1, -1), Q(-1, 1, 2) and R (1, -1, 2)


1
Expert's answer
2022-05-25T15:32:53-0400
PQ=(3,0,3),PR=(1,2,3)\overrightarrow{PQ}=(-3,0,3), \overrightarrow{PR}=(-1,-2,3)

PQ×PR=ijk303123\overrightarrow{PQ}\times \overrightarrow{PR}=\begin{vmatrix} \vec{i} & \vec{j} &\vec{k} \\ -3 & 0 & 3 \\ -1 & -2 & 3 \\ \end{vmatrix}

=i0323j3313+k3012=\vec{i}\begin{vmatrix} 0 & 3 \\ -2& 3 \end{vmatrix}-\vec{j}\begin{vmatrix} -3 & 3 \\ -1 & 3 \end{vmatrix}+\vec{k}\begin{vmatrix} -3 & 0 \\ -1 & -2 \end{vmatrix}

=6i+6j+6k=6\vec{i}+6\vec{j}+6\vec{k}

PQ×PR=63|\overrightarrow{PQ}\times \overrightarrow{PR}|=6\sqrt{3}

u=(13,13,13)\vec{u}=(\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment