Given that A = 2i + 3j - k, B = i - j +2k and C = 3i + 4j + k find:
a) A+2B
b) |A- B+2C|
c) D such that A - B + C 3D = 0
"A=\\left( 2,3,-1 \\right) ,B=\\left( 1,-1,2 \\right) ,C=\\left( 3,4,1 \\right) \\\\a:\\\\A+2B=\\left( 2+2,3-2,-1+4 \\right) =\\left( 4,1,3 \\right) \\\\b:\\\\A-B+2C=\\left( 2-1+6,3+1+8,-1-2+2 \\right) =\\left( 7,12,-1 \\right) \\\\\\left| A-B+2C \\right|=\\sqrt{7^2+12^2+1^2}=\\sqrt{194}\\\\c:\\\\A-B+C+3D=0\\Rightarrow \\\\\\Rightarrow D=\\frac{1}{3}\\left( B-A-C \\right) =\\frac{1}{3}\\left( 1-2-3,-1-3-4,2+1-1 \\right) =\\\\=\\left( -\\frac{4}{3},-\\frac{8}{3},\\frac{2}{3} \\right)"
Comments
Leave a comment