Let u=(-5, -2, 4), v= (3, 6, -5) and w = (-7, 1, -8)
a) Calculate (u × v).w and hence find the volume of the parallelepiped with adjacent sides u, v, and w.
b) Show that vector (u - projwu) and w are orthogonal.
c) Use the cross product to find the angle between u and w.
a)
"=-5\\begin{vmatrix}\n 6 & -5 \\\\\n 1 & -8\n\\end{vmatrix}+2\\begin{vmatrix}\n 3 & -5 \\\\\n -7 & -8\n\\end{vmatrix}+4\\begin{vmatrix}\n 3 & 6 \\\\\n -7 & 1\n\\end{vmatrix}"
"=-5(-48+5)+2(-24-35)+4(3+42)"
"=277"
"V=277" cubic units
b)
"\\vec {u}-proj_{\\vec{w}}\\vec{u}=\\vec {u}-\\dfrac{\\vec{u}\\cdot\\vec{w}}{|\\vec{w}|^2}\\vec{w}"
"(\\vec {u}-proj_{\\vec{w}}\\vec{u})\\cdot\\vec {w}=(\\vec {u}-\\dfrac{\\vec{u}\\cdot\\vec{w}}{|\\vec{w}|^2}\\vec{w})\\cdot\\vec {w}"
"=\\vec{u}\\cdot\\vec{w}-\\dfrac{\\vec{u}\\cdot\\vec{w}}{|\\vec{w}|^2}|\\vec{w}|^2"
Therefore "(\\vec {u}-proj_{\\vec{w}}\\vec{u})" and "\\vec{w}" are orthogonal.
c)
"=\\vec {i}\\begin{vmatrix}\n -2 & 4 \\\\\n 1 & -8\n\\end{vmatrix}-\\vec {j}\\begin{vmatrix}\n -5 & 4 \\\\\n -7 & -8\n\\end{vmatrix}+\\vec {k}\\begin{vmatrix}\n -5 & -2 \\\\\n -7 & 1\n\\end{vmatrix}"
"=12\\vec {i}-68\\vec {j}-19\\vec {k}"
"=\\sqrt{5129}"
"|\\vec{u}|=\\sqrt{(-5)^2+(-2)^2+(4)^2}=\\sqrt{47}"
"|\\vec{w}|=\\sqrt{(-7)^2+(1)^2+(-8)^2}=\\sqrt{114}"
"\\sin \\theta=\\dfrac{|\\vec{u}\\times\\vec{w}|}{|\\vec{u}||\\vec{w}|}=\\sqrt{\\dfrac{5129}{47(114)}}\\approx0.9784"
"\\theta=\\sin^{-1}{\\sqrt{\\dfrac{5129}{47(114)}}}\\approx78\\degree"
Comments
Leave a comment