Question #278329

Determine the equation of the plane containing the points P(1,3,2) Q=(-2,0,-2) and R=(1,4,3)


1
Expert's answer
2021-12-14T13:04:10-0500

There points

P=(1,3,2)Q=(2,0,2)R=(1,4,3)\begin{aligned} P=(1,3,2)\\ Q=(-2,0,2) \\ R=(1,4,3) \end{aligned}

So, the vectorPQ\overrightarrow {PQ} and PR\overrightarrow{PR} will be

PQ=(21)ı^+(03)ȷ^+(22)k^=3i^3ȷ^PR=(11)i^+(43)ȷ^+(32)k^=ȷ^+k^\begin{aligned} \overrightarrow{PQ} =(-2-1) \hat{\imath}+(0-3) \hat{\jmath}+(2-2) \hat{k}=-3 \hat{i}-3 \hat{\jmath} \\ \overrightarrow{PR}=(1-1) \hat{i}+(4-3) \hat{\jmath}+(3-2) \hat{k}=\hat{\jmath}+\hat{k} \\ \end{aligned}

So, The vector perpendicular to this two vectors is given by

PQ×PR=i^j^k^330011\overline{P Q} \times \overline{P R}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ -3 & -3 & 0 \\ 0 & 1 & 1 \end{array}\right|

So. The equation of plane will be

3(x1)+3(y3)+(3)(z2)=0xy+z=2\begin{gathered} -3(x-1)+3(y-3)+(-3)(z-2)=0 \\ \Rightarrow x-y+z=2 \end{gathered}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS