There points
P = ( 1 , 3 , 2 ) Q = ( − 2 , 0 , 2 ) R = ( 1 , 4 , 3 ) \begin{aligned}
P=(1,3,2)\\
Q=(-2,0,2) \\
R=(1,4,3)
\end{aligned} P = ( 1 , 3 , 2 ) Q = ( − 2 , 0 , 2 ) R = ( 1 , 4 , 3 )
So, the vectorP Q → \overrightarrow {PQ} PQ and P R → \overrightarrow{PR} PR will be
P Q → = ( − 2 − 1 ) ı ^ + ( 0 − 3 ) ȷ ^ + ( 2 − 2 ) k ^ = − 3 i ^ − 3 ȷ ^ P R → = ( 1 − 1 ) i ^ + ( 4 − 3 ) ȷ ^ + ( 3 − 2 ) k ^ = ȷ ^ + k ^ \begin{aligned}
\overrightarrow{PQ} =(-2-1) \hat{\imath}+(0-3) \hat{\jmath}+(2-2) \hat{k}=-3 \hat{i}-3 \hat{\jmath} \\
\overrightarrow{PR}=(1-1) \hat{i}+(4-3) \hat{\jmath}+(3-2) \hat{k}=\hat{\jmath}+\hat{k} \\
\end{aligned} PQ = ( − 2 − 1 ) ^ + ( 0 − 3 ) ^ + ( 2 − 2 ) k ^ = − 3 i ^ − 3 ^ PR = ( 1 − 1 ) i ^ + ( 4 − 3 ) ^ + ( 3 − 2 ) k ^ = ^ + k ^
So, The vector perpendicular to this two vectors is given by
P Q ‾ × P R ‾ = ∣ i ^ j ^ k ^ − 3 − 3 0 0 1 1 ∣ \overline{P Q} \times \overline{P R}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-3 & -3 & 0 \\
0 & 1 & 1
\end{array}\right| PQ × PR = ∣ ∣ i ^ − 3 0 j ^ − 3 1 k ^ 0 1 ∣ ∣
So. The equation of plane will be
− 3 ( x − 1 ) + 3 ( y − 3 ) + ( − 3 ) ( z − 2 ) = 0 ⇒ x − y + z = 2 \begin{gathered}
-3(x-1)+3(y-3)+(-3)(z-2)=0 \\
\Rightarrow x-y+z=2
\end{gathered} − 3 ( x − 1 ) + 3 ( y − 3 ) + ( − 3 ) ( z − 2 ) = 0 ⇒ x − y + z = 2
Comments