Determine the equation of the plane containing the points P(1,3,2) Q=(-2,0,-2) and R=(1,4,3)
There points
"\\begin{aligned}\n\nP=(1,3,2)\\\\\n\nQ=(-2,0,2) \\\\\n\nR=(1,4,3)\n\n\\end{aligned}"
So, the vector"\\overrightarrow {PQ}" and "\\overrightarrow{PR}" will be
"\\begin{aligned}\n\\overrightarrow{PQ} =(-2-1) \\hat{\\imath}+(0-3) \\hat{\\jmath}+(2-2) \\hat{k}=-3 \\hat{i}-3 \\hat{\\jmath} \\\\\n\\overrightarrow{PR}=(1-1) \\hat{i}+(4-3) \\hat{\\jmath}+(3-2) \\hat{k}=\\hat{\\jmath}+\\hat{k} \\\\\n\\end{aligned}"
So, The vector perpendicular to this two vectors is given by
"\\overline{P Q} \\times \\overline{P R}=\\left|\\begin{array}{ccc}\n\n\\hat{i} & \\hat{j} & \\hat{k} \\\\\n\n-3 & -3 & 0 \\\\\n\n0 & 1 & 1\n\n\\end{array}\\right|"
So. The equation of plane will be
"\\begin{gathered}\n-3(x-1)+3(y-3)+(-3)(z-2)=0 \\\\\n\\Rightarrow x-y+z=2\n\\end{gathered}"
Comments
Leave a comment