Question #271398

Known vectors:


a = (α, 0, 1), b = (1, β, 1), c = (1, 1, γ)


Determine the values of α, β,γ when the three vectors are orthogonal to each other.


1
Expert's answer
2021-11-26T12:45:41-0500

a=(α,0,1)=αi+kb=(1,β,1)=i+βj+kc=(1,1,γ)=i+j+γka = (α, 0, 1)=αi+k \\ b = (1, β, 1)=i+βj+k \\ c = (1, 1, γ)=i+j+γk\\


Since a,b, and care pairwise orthogonal to each other

aˉbˉ=0 & aˉcˉ=0(αi+k)(i+βj+k)=0α+0+1=0α=1\bar{a}*\bar{b}=0 \space \& \space \bar{a}*\bar{c}=0\\ (αi + k)(i+βj+k)=0\\ α+0+1=0\\ α=-1


(αi+k)(i+j+γk)=0α+0+γ=0α=γγ=1(αi + k)(i+j+γk)=0\\ α+0+γ=0\\ α=-γ\\ γ=1


(i+βj+k)(i+j+γk)=01+β+γ=01+β+γ=0β=2(i + βj+k)(i+j+γk)=0\\ 1+β+γ=0\\ 1+β+γ=0\\ β=-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS