Known vectors:
a = (α, 0, 1), b = (1, β, 1), c = (1, 1, γ)
Determine the values of α, β,γ when the three vectors are orthogonal to each other.
a=(α,0,1)=αi+kb=(1,β,1)=i+βj+kc=(1,1,γ)=i+j+γka = (α, 0, 1)=αi+k \\ b = (1, β, 1)=i+βj+k \\ c = (1, 1, γ)=i+j+γk\\a=(α,0,1)=αi+kb=(1,β,1)=i+βj+kc=(1,1,γ)=i+j+γk
Since a,b, and care pairwise orthogonal to each other
aˉ∗bˉ=0 & aˉ∗cˉ=0(αi+k)(i+βj+k)=0α+0+1=0α=−1\bar{a}*\bar{b}=0 \space \& \space \bar{a}*\bar{c}=0\\ (αi + k)(i+βj+k)=0\\ α+0+1=0\\ α=-1aˉ∗bˉ=0 & aˉ∗cˉ=0(αi+k)(i+βj+k)=0α+0+1=0α=−1
(αi+k)(i+j+γk)=0α+0+γ=0α=−γγ=1(αi + k)(i+j+γk)=0\\ α+0+γ=0\\ α=-γ\\ γ=1(αi+k)(i+j+γk)=0α+0+γ=0α=−γγ=1
(i+βj+k)(i+j+γk)=01+β+γ=01+β+γ=0β=−2(i + βj+k)(i+j+γk)=0\\ 1+β+γ=0\\ 1+β+γ=0\\ β=-2(i+βj+k)(i+j+γk)=01+β+γ=01+β+γ=0β=−2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments