Answer to Question #270953 in Analytic Geometry for Akiyah

Question #270953

Find the equations of the tangents and normal to the following curves:


  1. y2 + 8x = 0, parallel to x + y + 4 = 0.
  2. x2 = 3y, perpendicular to x – 2y + 7 = 0.
  3. x2 + 9y2 = 25, parallel to 4x + 9y + 30 = 0.
  4. 25x2 + 4y2 = 100, perpendicular to 8x – 15y + 4 = 0.
  5. x2 – y2 = 15, parallel to 4x – y + 20 = 0.
1
Expert's answer
2021-11-25T09:15:12-0500

1.

y2+8x=0y^2+8x=0

2yy=82yy'=-8

y=4yy'=\dfrac{-4}{y}slope=m1=y=4yslope=m_1=y'=\dfrac{-4}{y}

Tangent is parallel to x+y+4=0.x+y+4=0.


y=x4,slope=m2=1y=-x-4, slope=m_2=-1

Then m1=m2=>4y=1=>y=4m_1=m_2=>-\dfrac{4}{y}=-1=>y=4

Find xx


(4)2+8x=0=>x=2(4)^2+8x=0=>x=-2

Point (2,4)(-2, 4)

Tangent line is


y4=(x(2))y-4=-(x-(-2))

The equation of the tangent line in slope-intercept form


y=x+2y=-x+2



Find the equation of the normal at the point (2,4)(-2, 4)


slope=m3=1m1=1slope=m_3=-\dfrac{1}{m_1}=1

y4=(x(2))y-4=(x-(-2))

The equation of the normal line in slope-intercept form


y=x+6y=x+6

2.

x2=3yx^2=3y

2x=3y2x=3y'

y=2x3y'=\dfrac{2x}{3}slope=m1=y=2x3slope=m_1=y'=\dfrac{2x}{3}

Tangent is  perpendicular to x2y+7=0.x-2y+7=0.

y=12x+72,slope=m2=12y=\dfrac{1}{2}x+\dfrac{7}{2}, slope=m_2=\dfrac{1}{2}

Then m1=1m2=>2x3=2=>x=3m_1=-\dfrac{1}{m_2}=>\dfrac{2x}{3}=-2=>x=-3

Find yy

(3)2=3y=>y=3(-3)^2=3y=>y=3

Point (3,3)(-3, 3)

Tangent line is


y3=2(x(3))y-3=-2(x-(-3))

The equation of the tangent line in slope-intercept form


y=2x3y=-2x-3



Find the equation of the normal at the point (3,3)(-3, 3)

slope=m3=1m1=12slope=m_3=-\dfrac{1}{m_1}=\dfrac{1}{2}

y3=12(x(3))y-3=\dfrac{1}{2}(x-(-3))

The equation of the normal line in slope-intercept form


y=12x+92y=\dfrac{1}{2}x+\dfrac{9}{2}



3.

x2+9y2=25x^2+9y^2=25

2x+18yy=02x+18yy'=0

y=x9yy'=\dfrac{-x}{9y}slope=m1=y=x9yslope=m_1=y'=-\dfrac{x}{9y}

Tangent is parallel to 4x+9y+30=0.4x + 9y + 30 = 0.


y=49x103,slope=m2=49y=-\dfrac{4}{9}x-\dfrac{10}{3}, slope=m_2=-\dfrac{4}{9}

Then m1=m2=>x9y=49=>x=4ym_1=m_2=>-\dfrac{x}{9y}=-\dfrac{4}{9}=>x=4y

Find yy


(4y)2+9y2=25=>y=±1(4y)^2+9y^2=25=>y=\pm1

Point (4,1),(-4, -1), Point (4,1).(4, 1).


Point (4,1)(-4, -1)

Tangent line is


y(1)=49(x(4))y-(-1)=-\dfrac{4}{9}(x-(-4))

The equation of the tangent line in slope-intercept form


y=49x259y=-\dfrac{4}{9}x-\dfrac{25}{9}



Find the equation of the normal at the point (4,1)(-4, -1)


slope=m3=1m1=94slope=m_3=-\dfrac{1}{m_1}=\dfrac{9}{4}

y(1)=94(x(4))y-(-1)=\dfrac{9}{4}(x-(-4))

The equation of the normal line in slope-intercept form


y=94x+8y=\dfrac{9}{4}x+8

Point (4,1)(4, 1)

Tangent line is


y1=49(x4)y-1=-\dfrac{4}{9}(x-4)

The equation of the tangent line in slope-intercept form


y=49x+259y=-\dfrac{4}{9}x+\dfrac{25}{9}



Find the equation of the normal at the point (4,1)(4, 1)


slope=m3=1m1=94slope=m_3=-\dfrac{1}{m_1}=\dfrac{9}{4}

y1=94(x4)y-1=\dfrac{9}{4}(x-4)

The equation of the normal line in slope-intercept form


y=94x8y=\dfrac{9}{4}x-8

4.

25x2+4y2=10025x^2+4y^2=100

50x+8yy=050x+8yy'=0

y=25x4yy'=\dfrac{-25x}{4y}slope=m1=y=25x4yslope=m_1=y'=-\dfrac{25x}{4y}

Tangent is perpendicular to 8x15y+4=0.8x – 15y + 4 = 0.


y=815x+415,slope=m2=815y=\dfrac{8}{15}x+\dfrac{4}{15}, slope=m_2=\dfrac{8}{15}

Then m1=1m2=>25x4y=158=>x=310ym_1=-\dfrac{1}{m_2}=>-\dfrac{25x}{4y}=-\dfrac{15}{8}=>x=\dfrac{3}{10}y

Find yy


25(310y)2+4y2=100=>y=±425(\dfrac{3}{10}y)^2+4y^2=100=>y=\pm4

Point (65,4),(-\dfrac{6}{5}, -4), Point (65,4).(\dfrac{6}{5}, 4).


Point (65,4)(-\dfrac{6}{5}, -4)

Tangent line is


y(4)=158(x(65))y-(-4)=-\dfrac{15}{8}(x-(-\dfrac{6}{5}))

The equation of the tangent line in slope-intercept form


y=158x254y=-\dfrac{15}{8}x-\dfrac{25}{4}



Find the equation of the normal at the point (65,4)(-\dfrac{6}{5}, -4)

slope=m3=1m1=815slope=m_3=-\dfrac{1}{m_1}=\dfrac{8}{15}

y(4)=815(x(65))y-(-4)=\dfrac{8}{15}(x-(-\dfrac{6}{5}))

The equation of the normal line in slope-intercept form


y=815x8425y=\dfrac{8}{15}x-\dfrac{84}{25}

Point (65,4)(\dfrac{6}{5}, 4)

Tangent line is


y4=158(x65)y-4=-\dfrac{15}{8}(x-\dfrac{6}{5})

The equation of the tangent line in slope-intercept form


y=158x+254y=-\dfrac{15}{8}x+\dfrac{25}{4}



Find the equation of the normal at the point (65,4)(\dfrac{6}{5}, 4)


slope=m3=1m1=815slope=m_3=-\dfrac{1}{m_1}=\dfrac{8}{15}

y4=815(x65)y-4=\dfrac{8}{15}(x-\dfrac{6}{5})

The equation of the normal line in slope-intercept form


y=815x+8425y=\dfrac{8}{15}x+\dfrac{84}{25}

5.

x2y2=15x^2-y^2=15

2x2yy=02x-2yy'=0

y=xyy'=\dfrac{x}{y}slope=m1=y=xyslope=m_1=y'=\dfrac{x}{y}

Tangent is parallel to 4xy+20=0.4x – y + 20 = 0.


y=4x+20,slope=m2=4y=4x+20, slope=m_2=4

Then m1=m2=>xy=4=>x=4ym_1=m_2=>\dfrac{x}{y}=4=>x=4y

Find yy


(4y)2y2=15=>y=±1(4y)^2-y^2=15=>y=\pm1

Point (4,1),(-4, -1), Point (4,1).(4, 1).


Point (4,1)(-4, -1)

Tangent line is


y(1)=4(x(4))y-(-1)=4(x-(-4))

The equation of the tangent line in slope-intercept form


y=4x+15y=4x+15



Find the equation of the normal at the point (4,1)(-4, -1)


slope=m3=1m1=14slope=m_3=-\dfrac{1}{m_1}=-\dfrac{1}{4}

y(1)=14(x(4))y-(-1)=-\dfrac{1}{4}(x-(-4))

The equation of the normal line in slope-intercept form


y=14x2y=-\dfrac{1}{4}x-2

Point (4,1)(4, 1)

Tangent line is


y1=4(x4)y-1=4(x-4)

The equation of the tangent line in slope-intercept form


y=4x15y=4x-15



Find the equation of the normal at the point (4,1)(4, 1)


slope=m3=1m1=14slope=m_3=-\dfrac{1}{m_1}=-\dfrac{1}{4}

y1=14(x4)y-1=-\dfrac{1}{4}(x-4)

The equation of the normal line in slope-intercept form


y=14x+2y=-\dfrac{1}{4}x+2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment