find the center,foci,vertices, endpoints of conjugate axis.determine the equation of the asymptotes and sketsch the graph
1. (y+6)²/25-(x-4)²/39=1
2. 9x²+126x-16y²-96y+153=0
1.
Center: "(4, -6)"
Vertices: "(4, -11), (4, -1)"
"c^2=a^2+b^2=25+39=64=>c=8"Foci: "(4,-14), (4, 2)"
Endpoints of conjugate axis: "(4-\\sqrt{39}, -6), (4+\\sqrt{39}, -6)"
First asymptote: "y=-\\dfrac{5\\sqrt{39}}{39}(x-4)-6"
Second asymptote: "y=\\dfrac{5\\sqrt{39}}{39}(x-4)-6"
2.
"9(x^2+14x+49)-16(y^2+6y+9)=144"
"\\dfrac{(x+7)^2}{16}-\\dfrac{(y+3)^2}{9}=1"
Center: "(-7, -3)"
Vertices: "(-11, -3), (-3, -3)"
"c^2=a^2+b^2=16+9=25=>c=5"Foci: "(-12,-3), (-2,-3)"
Endpoints of conjugate axis: "(-7, -6), (-7,0)"
First asymptote: "y=-\\dfrac{3}{4}x-\\dfrac{33}{4}"
Second asymptote: "y=\\dfrac{3}{4}x+\\dfrac{9}{4}"
Comments
Leave a comment