Answer to Question #269032 in Analytic Geometry for Faru

Question #269032

If l, m be the portions of the axes of x and y intercepted by the tangent at any point ( x,y) on the curve ( x/a )^2/3+  (  y/b)^2/3  , show that ( l^2/a^2) +(m^2/b^2)=1


1
Expert's answer
2021-12-01T13:48:36-0500

l, m be the portions of the axes of x and y intercepted by the tangent at any point ( x,y) on the curve

(xa)23+(yb)23=1( \frac{x}{a} )^{\frac{2}{3}}+ (\frac{y}{b})^{\frac{2}{3}}=1

b23x23+a23y23=a23b23b^{\frac{2}{3}}x^{\frac{2}{3}}+a^{\frac{2}{3}}y^{\frac{2}{3}}=a^{\frac{2}{3}}b^{\frac{2}{3}} ••••equation(1)

The parametric coordinate of the point (x,y) is (acos³θ,bsin³θ)acos³\theta , bsin³\theta) , θ\theta is a parameter.

By the problem, equation of tangent is

xl+ym=1\frac{x}{l}+\frac{y}{m}=1 ••••equation(2) to the curve at ( acos³θ\theta , bsin³θ)\theta)

Now we find equation of tangent at (acos³θ\theta , bsin³θ)\theta)

Differentiating equation (1) with respect to x we get

23b23x13+23a23y13dydx=0\frac{2}{3}b^{\frac{2}{3}}x^{-\frac{1}{3}} + \frac{2}{3}a^{\frac{2}{3}}y^{-\frac{1}{3}} \frac{dy}{dx}=0

=> dydx=b23y13a23x13\frac{dy}{dx} = -\frac{ {b^{\frac{2}{3}}y^{\frac{1}{3}}}}{ {a^{\frac{2}{3}}x^{\frac{1}{3}}}}

Now [dydx](acos³θ,bsin³θ)=b23(bsin³θ)13a23(acos³θ)13=batanθ[\frac{dy}{dx}]_{(acos³\theta , bsin³\theta)}= -\frac{ {b^{\frac{2}{3}}(bsin³\theta)^{\frac{1}{3}}}}{ {a^{\frac{2}{3}}(acos³\theta)^ {\frac{1}{3}}}} =-\frac{b}{a}tan\theta

So equation of tangent at (acos³θ,bsin³θ)(acos³\theta , bsin³\theta) will be

ybsin³θy-bsin³\theta =batanθ(xacos³θ)-\frac{b}{a}tan\theta(x-acos³\theta)

=> (acosθ)y+(bsinθ)x=absinθcos³θ+abcosθsin³θ(acos\theta)y + (bsin\theta)x = absin\theta cos³\theta + abcos\theta sin³\theta

=> (bsinθ)x+(acosθ)y=absinθcosθ(cos²θ+sin²θ)(bsin\theta)x +(acos\theta)y = absin\theta cos\theta (cos²\theta + sin²\theta)

=> (bsinθ)x+(acosθ)y=absinθcosθ(bsin\theta)x +(acos\theta)y = absin\theta cos\theta

=> (bsinθ)x+(acosθ)yabsinθcosθ=1\frac{(bsin\theta)x +(acos\theta)y}{absin\theta cos\theta }= 1

=> xacosθ+ybsinθ=1\frac{x}{acos\theta}+\frac{y}{bsin\theta}=1 ••••equation(3)

Obviously equation (2) and equation (3) are identical.

So equating coefficients we get

lacosθ=mbsinθ=11\frac{l}{acos\theta}=\frac{m}{bsin\theta}=\frac{1}{1}

=> l = acosθ\theta and m = bsinθ\theta

=> la=cosθ\frac{l}{a} = cos\theta and mb=sinθ\frac{m}{b} = sin\theta

So (la)2+(mb)2=cos²θ+sin²θ{(\frac{l}{a})}^{2} +{(\frac{m}{b})}^{2}= cos²\theta + sin²\theta

=> (la)2+(mb)2=1{(\frac{l}{a})}^{2} +{(\frac{m}{b})}^{2}= 1


=> (l²a²)+(m²b²)=1{(\frac{l²}{a²})}+{(\frac{m²}{b²})}=1

Hence proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment