If l, m be the portions of the axes of x and y intercepted by the tangent at any point ( x,y) on the curve ( x/a )^2/3+ ( y/b)^2/3 , show that ( l^2/a^2) +(m^2/b^2)=1
l, m be the portions of the axes of x and y intercepted by the tangent at any point ( x,y) on the curve
"( \\frac{x}{a} )\ufeff^{\\frac{2}{3}}+ (\\frac{y}{b})\ufeff^{\\frac{2}{3}}=1"
"b^{\\frac{2}{3}}x^{\\frac{2}{3}}+a^{\\frac{2}{3}}y^{\\frac{2}{3}}=a^{\\frac{2}{3}}b^{\\frac{2}{3}}" ••••equation(1)
The parametric coordinate of the point (x,y) is ("acos\u00b3\\theta , bsin\u00b3\\theta)" , "\\theta" is a parameter.
By the problem, equation of tangent is
"\\frac{x}{l}+\\frac{y}{m}=1" ••••equation(2) to the curve at ( acos³"\\theta" , bsin³"\\theta)"
Now we find equation of tangent at (acos³"\\theta" , bsin³"\\theta)"
Differentiating equation (1) with respect to x we get
"\\frac{2}{3}b^{\\frac{2}{3}}x^{-\\frac{1}{3}} + \\frac{2}{3}a^{\\frac{2}{3}}y^{-\\frac{1}{3}} \\frac{dy}{dx}=0"
=> "\\frac{dy}{dx} = -\\frac{ {b^{\\frac{2}{3}}y^{\\frac{1}{3}}}}{ {a^{\\frac{2}{3}}x^{\\frac{1}{3}}}}"
Now "[\\frac{dy}{dx}]_{(acos\u00b3\\theta , bsin\u00b3\\theta)}= -\\frac{ {b^{\\frac{2}{3}}(bsin\u00b3\\theta)^{\\frac{1}{3}}}}{ {a^{\\frac{2}{3}}(acos\u00b3\\theta)^ {\\frac{1}{3}}}} =-\\frac{b}{a}tan\\theta"
So equation of tangent at "(acos\u00b3\\theta , bsin\u00b3\\theta)" will be
"y-bsin\u00b3\\theta" ="-\\frac{b}{a}tan\\theta(x-acos\u00b3\\theta)"
=> "(acos\\theta)y + (bsin\\theta)x = absin\\theta cos\u00b3\\theta + abcos\\theta sin\u00b3\\theta"
=> "(bsin\\theta)x +(acos\\theta)y = absin\\theta cos\\theta (cos\u00b2\\theta + sin\u00b2\\theta)"
=> "(bsin\\theta)x +(acos\\theta)y = absin\\theta cos\\theta"
=> "\\frac{(bsin\\theta)x +(acos\\theta)y}{absin\\theta cos\\theta }= 1"
=> "\\frac{x}{acos\\theta}+\\frac{y}{bsin\\theta}=1" ••••equation(3)
Obviously equation (2) and equation (3) are identical.
So equating coefficients we get
"\\frac{l}{acos\\theta}=\\frac{m}{bsin\\theta}=\\frac{1}{1}"
=> l = acos"\\theta" and m = bsin"\\theta"
=> "\\frac{l}{a} = cos\\theta" and "\\frac{m}{b} = sin\\theta"
So "{(\\frac{l}{a})}^{2} +{(\\frac{m}{b})}^{2}= cos\u00b2\\theta + sin\u00b2\\theta"
=> "{(\\frac{l}{a})}^{2} +{(\\frac{m}{b})}^{2}= 1"
=> "{(\\frac{l\u00b2}{a\u00b2})}+{(\\frac{m\u00b2}{b\u00b2})}=1"
Hence proved.
Comments
Leave a comment