1)
a)
u ⋅ v = 2 + 2 ⋅ 3 − 4 ⋅ 5 = − 12 u\cdot v=2+2\cdot 3-4\cdot 5=-12 u ⋅ v = 2 + 2 ⋅ 3 − 4 ⋅ 5 = − 12
b)
u ⋅ u = 1 + 2 ⋅ 2 + 4 ⋅ 4 = 21 u\cdot u=1+2\cdot 2+4\cdot 4=21 u ⋅ u = 1 + 2 ⋅ 2 + 4 ⋅ 4 = 21
c)
( u ⋅ v ) v = − 12 ( 2 , 3 , 5 ) = ( − 24 , − 36 , − 60 ) (u\cdot v) v=-12(2, 3, 5)=(-24,-36,-60) ( u ⋅ v ) v = − 12 ( 2 , 3 , 5 ) = ( − 24 , − 36 , − 60 )
d)
u ⋅ v = ∣ u ∣ ∣ v ∣ c o s α u\cdot v=|u||v|cos\alpha u ⋅ v = ∣ u ∣∣ v ∣ cos α
∣ u ∣ = 1 + 2 2 + 4 2 = 21 |u|=\sqrt{1+2^2+4^2}=\sqrt{21} ∣ u ∣ = 1 + 2 2 + 4 2 = 21
∣ v ∣ = 2 2 + 3 2 + 5 2 = 38 |v|=\sqrt{2^2+3^2+5^2}=\sqrt{38} ∣ v ∣ = 2 2 + 3 2 + 5 2 = 38
c o s α = − 12 21 ⋅ 38 = − 0.4248 cos\alpha=-\frac{12}{\sqrt{21\cdot38}}=-0.4248 cos α = − 21 ⋅ 38 12 = − 0.4248
α = a r c c o s ( − 0.4248 ) = 115 ° \alpha=arccos(-0.4248)=115\degree α = a rccos ( − 0.4248 ) = 115°
e)
u ~ = u / ∣ u ∣ = ( 1 / 21 , 2 / 21 , − 4 / 21 ) \tilde{u}=u/|u|=(1/\sqrt{21}, 2/\sqrt{21}, -4/\sqrt{21}) u ~ = u /∣ u ∣ = ( 1/ 21 , 2/ 21 , − 4/ 21 )
v ~ = v / ∣ v ∣ = ( 2 / 38 , 3 / 38 , 5 / 38 ) \tilde{v}=v/|v|=(2/\sqrt{38}, 3/\sqrt{38}, 5/\sqrt{38}) v ~ = v /∣ v ∣ = ( 2/ 38 , 3/ 38 , 5/ 38 )
2)
A • B = ∣ A ∣ ∣ B ∣ c o s 30 ° = 6 A•B =|A||B|cos30\degree= 6 A • B = ∣ A ∣∣ B ∣ cos 30° = 6
∣ B ∣ = 2 2 + 2 2 + 1 = 3 |B|=\sqrt{2^2+2^2+1}=3 ∣ B ∣ = 2 2 + 2 2 + 1 = 3
∣ A ∣ = A ⋅ B ∣ B ∣ c o s 30 ° = 6 3 3 / 2 = 4 / 3 |A|=\frac{A\cdot B}{|B|cos30\degree}=\frac{6}{3\sqrt 3/2}=4/\sqrt 3 ∣ A ∣ = ∣ B ∣ cos 30° A ⋅ B = 3 3 /2 6 = 4/ 3
3)
A • B = ∣ A ∣ ∣ B ∣ c o s α = 0 A•B =|A||B|cos\alpha= 0 A • B = ∣ A ∣∣ B ∣ cos α = 0
α = 90 ° \alpha=90\degree α = 90°
4)
( u + v ) • ( 2 u – v ) = 2 u • u + u ⋅ v − v • v = 2 ⋅ 4 − 5 − 10 = − 7 (u+ v)•(2u – v)=2 u•u+u\cdot v- v•v=2\cdot4-5-10=-7 ( u + v ) • ( 2 u – v ) = 2 u • u + u ⋅ v − v • v = 2 ⋅ 4 − 5 − 10 = − 7
5)
u ⋅ v = ( c o s 0 , s i n 0 , – 1 ) ⋅ ( s i n 0 , − c o s 0 , 0 ) = 0 + 0 + 0 = 0 u\cdot v = (cos 0, sin 0,–1)\cdot(sin 0,-cos 0,0)=0+0+0=0 u ⋅ v = ( cos 0 , s in 0 , –1 ) ⋅ ( s in 0 , − cos 0 , 0 ) = 0 + 0 + 0 = 0
u and v are are orthogonal
Comments