Answer to Question #266067 in Analytic Geometry for arbee

Question #266067

1). Given the following vectors: u=(1, 2, -4) and v=(2, 3, 5)

Find:

a) u.v

b) u.u

c) (u.v) v

d) angle between u and v

e) unit vector


2. )Suppose that B =(2, 2, 1) and makes 30° with A and A•B = 6. What is the magnitude of A?


3. )What is the angle between A and B if A• B = 0


4.) Find (u+ v)•(2u – v) given that u•u= 4 u•v =-5 and v•v=10


5. )Determine if u and u = (cos 0, sin 0,–1); v=(sin 0,-cos 0,0) V are orthogonal


1
Expert's answer
2021-11-15T16:44:36-0500

1)

a)

uv=2+2345=12u\cdot v=2+2\cdot 3-4\cdot 5=-12


b)

uu=1+22+44=21u\cdot u=1+2\cdot 2+4\cdot 4=21


c)

(uv)v=12(2,3,5)=(24,36,60)(u\cdot v) v=-12(2, 3, 5)=(-24,-36,-60)


d)

uv=uvcosαu\cdot v=|u||v|cos\alpha

u=1+22+42=21|u|=\sqrt{1+2^2+4^2}=\sqrt{21}

v=22+32+52=38|v|=\sqrt{2^2+3^2+5^2}=\sqrt{38}


cosα=122138=0.4248cos\alpha=-\frac{12}{\sqrt{21\cdot38}}=-0.4248

α=arccos(0.4248)=115°\alpha=arccos(-0.4248)=115\degree


e)

u~=u/u=(1/21,2/21,4/21)\tilde{u}=u/|u|=(1/\sqrt{21}, 2/\sqrt{21}, -4/\sqrt{21})

v~=v/v=(2/38,3/38,5/38)\tilde{v}=v/|v|=(2/\sqrt{38}, 3/\sqrt{38}, 5/\sqrt{38})


2)

AB=ABcos30°=6A•B =|A||B|cos30\degree= 6

B=22+22+1=3|B|=\sqrt{2^2+2^2+1}=3


A=ABBcos30°=633/2=4/3|A|=\frac{A\cdot B}{|B|cos30\degree}=\frac{6}{3\sqrt 3/2}=4/\sqrt 3


3)

AB=ABcosα=0A•B =|A||B|cos\alpha= 0

α=90°\alpha=90\degree


4)

(u+v)(2uv)=2uu+uvvv=24510=7(u+ v)•(2u – v)=2 u•u+u\cdot v- v•v=2\cdot4-5-10=-7


5)

uv=(cos0,sin0,1)(sin0,cos0,0)=0+0+0=0u\cdot v = (cos 0, sin 0,–1)\cdot(sin 0,-cos 0,0)=0+0+0=0

u and v are are orthogonal


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment