1). Given the following vectors: u=(1, 2, -4) and v=(2, 3, 5)
Find:
a) u.v
b) u.u
c) (u.v) v
d) angle between u and v
e) unit vector
2. )Suppose that B =(2, 2, 1) and makes 30° with A and A•B = 6. What is the magnitude of A?
3. )What is the angle between A and B if A• B = 0
4.) Find (u+ v)•(2u – v) given that u•u= 4 u•v =-5 and v•v=10
5. )Determine if u and u = (cos 0, sin 0,–1); v=(sin 0,-cos 0,0) V are orthogonal
1)
a)
"u\\cdot v=2+2\\cdot 3-4\\cdot 5=-12"
b)
"u\\cdot u=1+2\\cdot 2+4\\cdot 4=21"
c)
"(u\\cdot v) v=-12(2, 3, 5)=(-24,-36,-60)"
d)
"u\\cdot v=|u||v|cos\\alpha"
"|u|=\\sqrt{1+2^2+4^2}=\\sqrt{21}"
"|v|=\\sqrt{2^2+3^2+5^2}=\\sqrt{38}"
"cos\\alpha=-\\frac{12}{\\sqrt{21\\cdot38}}=-0.4248"
"\\alpha=arccos(-0.4248)=115\\degree"
e)
"\\tilde{u}=u\/|u|=(1\/\\sqrt{21}, 2\/\\sqrt{21}, -4\/\\sqrt{21})"
"\\tilde{v}=v\/|v|=(2\/\\sqrt{38}, 3\/\\sqrt{38}, 5\/\\sqrt{38})"
2)
"A\u2022B =|A||B|cos30\\degree= 6"
"|B|=\\sqrt{2^2+2^2+1}=3"
"|A|=\\frac{A\\cdot B}{|B|cos30\\degree}=\\frac{6}{3\\sqrt 3\/2}=4\/\\sqrt 3"
3)
"A\u2022B =|A||B|cos\\alpha= 0"
"\\alpha=90\\degree"
4)
"(u+ v)\u2022(2u \u2013 v)=2 u\u2022u+u\\cdot v- v\u2022v=2\\cdot4-5-10=-7"
5)
"u\\cdot v = (cos 0, sin 0,\u20131)\\cdot(sin 0,-cos 0,0)=0+0+0=0"
u and v are are orthogonal
Comments
Leave a comment