(a) 2 u + 3 v + 4 w = 2 ( 2 i – 3 j + 4 k ) + 3 ( 3 i + j – 2 k ) + 4 ( i + 5 j + 3 k ) = 4 i − 6 j + 8 k + 9 i + 3 j − 6 k + 4 i + 20 j + 12 k = 17 i + 17 j + 14 k 2u+3v+4w = 2(2i – 3j + 4k) + 3(3i + j – 2k) + 4(i + 5j + 3k) = 4i-6j+8k+9i+3j-6k+4i+20j+12k = 17i+17j+14k 2 u + 3 v + 4 w = 2 ( 2 i –3 j + 4 k ) + 3 ( 3 i + j –2 k ) + 4 ( i + 5 j + 3 k ) = 4 i − 6 j + 8 k + 9 i + 3 j − 6 k + 4 i + 20 j + 12 k = 17 i + 17 j + 14 k
(b) u • v = ( 2 i – 3 j + 4 k ) • ( 3 i + j – 2 k ) = 6 − 3 − 8 = − 5 u•v = (2i – 3j + 4k)•(3i + j – 2k) = 6-3-8=-5 u • v = ( 2 i –3 j + 4 k ) • ( 3 i + j –2 k ) = 6 − 3 − 8 = − 5
u • w = ( 2 i – 3 j + 4 k ) • ( i + 5 j + 3 k ) = 2 − 15 + 12 = − 1 u•w = (2i – 3j + 4k)•(i + 5j + 3k) = 2-15+12=-1 u • w = ( 2 i –3 j + 4 k ) • ( i + 5 j + 3 k ) = 2 − 15 + 12 = − 1
(c) u × v = ( i j k 2 − 3 4 3 1 − 2 ) = i ( 6 − 4 ) − j ( − 4 − 12 ) + k ( 2 + 9 ) = 2 i + 16 j + 11 k u×v = \begin{pmatrix}
i & j & k \\
2 & -3 & 4 \\
3 & 1 & -2
\end{pmatrix} = i(6-4)-j(-4-12)+k(2+9) = 2i+16j+11k u × v = ⎝ ⎛ i 2 3 j − 3 1 k 4 − 2 ⎠ ⎞ = i ( 6 − 4 ) − j ( − 4 − 12 ) + k ( 2 + 9 ) = 2 i + 16 j + 11 k
∣ u × v ∣ = 2 2 + 1 6 2 + 1 1 2 = 381 |u×v| = \sqrt{2²+16²+11²} = \sqrt{381} ∣ u × v ∣ = 2 2 + 1 6 2 + 1 1 2 = 381
(d) unit vector of u= u ∣ u ∣ = 2 i – 3 j + 4 k 2 2 + ( − 3 ) 2 + 4 2 = 2 i – 3 j + 4 k 29 = \frac{u}{|u|} = \frac{2i – 3j + 4k}{\sqrt{2²+(-3)²+4²}} = \frac{2i – 3j + 4k}{\sqrt{29}} = ∣ u ∣ u = 2 2 + ( − 3 ) 2 + 4 2 2 i –3 j + 4 k = 29 2 i –3 j + 4 k
unit vector of v = v ∣ v ∣ = 3 i + j – 2 k 3 2 + 1 2 + ( − 2 ) 2 = 3 i + j – 2 k 14 \frac{v}{|v|} = \frac{3i + j – 2k}{\sqrt{3²+1²+(-2)²}} = \frac{3i + j – 2k}{\sqrt{14}} ∣ v ∣ v = 3 2 + 1 2 + ( − 2 ) 2 3 i + j –2 k = 14 3 i + j –2 k
unit vector of w = w ∣ w ∣ = i + 5 j + 3 k 1 2 + 5 2 + 3 2 = i + 5 j + 3 k 35 \frac{w}{|w|} = \frac{i + 5j + 3k}{\sqrt{1²+5²+3²}} = \frac{i + 5j + 3k}{\sqrt{35}} ∣ w ∣ w = 1 2 + 5 2 + 3 2 i + 5 j + 3 k = 35 i + 5 j + 3 k
(e) Proj(u,w) = u • w ∣ w ∣ 2 w = − 1 35 ( i + 5 j + 3 k ) \frac{u•w}{|w|²} w = \frac{-1}{35} (i + 5j + 3k) ∣ w ∣ 2 u • w w = 35 − 1 ( i + 5 j + 3 k )
(f) Angle between u and v
C o s ∅ = u • v ∣ u ∣ ∣ v ∣ = − 5 29 × 14 = − 5 406 Cos∅ = \frac{u•v}{|u||v|} = \frac{-5}{\sqrt{29×14}} = \frac{-5}{\sqrt{406}} C os ∅ = ∣ u ∣∣ v ∣ u • v = 29 × 14 − 5 = 406 − 5
= > ∅ = c o s − 1 ( − 5 406 ) => ∅ = cos^{-1}(\frac{-5}{\sqrt{406}}) => ∅ = co s − 1 ( 406 − 5 )
∅ = 104.37 ° ∅ = 104.37° ∅ = 104.37°
Comments