Question #262384

Let u = 2i – 3j + 4k v = 3i + k – 2k w = i+ 5j+3k

a. 2u + 3v + 4w

b. u . v and u . w

c. u x v and || u x v ||

d. Find the unit vector of u, v and w

e. Proj (u,w)

f. Establish the angle between the u and v.


1
Expert's answer
2021-11-08T16:57:32-0500

(a) 2u+3v+4w=2(2i3j+4k)+3(3i+j2k)+4(i+5j+3k)=4i6j+8k+9i+3j6k+4i+20j+12k=17i+17j+14k2u+3v+4w = 2(2i – 3j + 4k) + 3(3i + j – 2k) + 4(i + 5j + 3k) = 4i-6j+8k+9i+3j-6k+4i+20j+12k = 17i+17j+14k


(b) uv=(2i3j+4k)(3i+j2k)=638=5u•v = (2i – 3j + 4k)•(3i + j – 2k) = 6-3-8=-5


uw=(2i3j+4k)(i+5j+3k)=215+12=1u•w = (2i – 3j + 4k)•(i + 5j + 3k) = 2-15+12=-1



(c) u×v=(ijk234312)=i(64)j(412)+k(2+9)=2i+16j+11ku×v = \begin{pmatrix} i & j & k \\ 2 & -3 & 4 \\ 3 & 1 & -2 \end{pmatrix} = i(6-4)-j(-4-12)+k(2+9) = 2i+16j+11k


u×v=22+162+112=381|u×v| = \sqrt{2²+16²+11²} = \sqrt{381}



(d) unit vector of u=uu=2i3j+4k22+(3)2+42=2i3j+4k29= \frac{u}{|u|} = \frac{2i – 3j + 4k}{\sqrt{2²+(-3)²+4²}} = \frac{2i – 3j + 4k}{\sqrt{29}}


unit vector of v = vv=3i+j2k32+12+(2)2=3i+j2k14\frac{v}{|v|} = \frac{3i + j – 2k}{\sqrt{3²+1²+(-2)²}} = \frac{3i + j – 2k}{\sqrt{14}}


unit vector of w = ww=i+5j+3k12+52+32=i+5j+3k35\frac{w}{|w|} = \frac{i + 5j + 3k}{\sqrt{1²+5²+3²}} = \frac{i + 5j + 3k}{\sqrt{35}}


(e) Proj(u,w) = uww2w=135(i+5j+3k)\frac{u•w}{|w|²} w = \frac{-1}{35} (i + 5j + 3k)


(f) Angle between u and v

Cos=uvuv=529×14=5406Cos∅ = \frac{u•v}{|u||v|} = \frac{-5}{\sqrt{29×14}} = \frac{-5}{\sqrt{406}}


=>=cos1(5406)=> ∅ = cos^{-1}(\frac{-5}{\sqrt{406}})


=104.37°∅ = 104.37°




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS