Prove and Disprove that a scalar and vector can be added.
where V1 and V2 a are vectors.
let K be the scalar
A vector and scalar can be multiplied but cannot be added or substracted.
scalar multiplication
V→=K<V1,V2><KV1,KV2>\overrightarrow{V}=K<V_1,V_2>\\<KV_1,KV_2>V=K<V1,V2><KV1,KV2>
after scalar multiplication
vector addition
let
V→=<V1,V2>U→=<U1,U2>V→+U→=<V1+U1,V2+U2>\overrightarrow{V}=<V_1,V_2>\\\overrightarrow{U}=<U_1,U_2>\\\overrightarrow{V}+\overrightarrow{U}=<V_1+U_1,V_2+U_2>V=<V1,V2>U=<U1,U2>V+U=<V1+U1,V2+U2>
scalar multiplication and vector addition
KV→=<KV1,KV2>KU→=<KU1,KU2>K(V→+U→)=<K(V1+U1),K(V2+U2)>\overrightarrow{KV}=<KV_1,KV_2>\\\overrightarrow{KU}=<KU_1,KU_2>\\K(\overrightarrow{V}+\overrightarrow{U})=<K(V_1+U_1),K(V_2+U_2)>KV=<KV1,KV2>KU=<KU1,KU2>K(V+U)=<K(V1+U1),K(V2+U2)>
scalar and vector addition
consider a vector v→\overrightarrow{v}v
which looks like
consider a scalar k
let say k=5
we cannot add a number to a vector
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments