Known vectors:
⃗a = (1, 0, 1) , ⃗b = (0, 1, -1) , ⃗c = (0, 0, 1)
Find the angle between:
1. a and b
2. a and c
3. b and c
"\\vec a \\cdot \\vec c=1(0)+0(0)+1(1)=1"
"\\vec b \\cdot \\vec c=0(0)+1(0)-1(1)=-1"
"|\\vec a|=\\sqrt{1^2+0^2+1^2}=\\sqrt{2}"
"|\\vec b|=\\sqrt{0^2+1^2+(-1)^2}=\\sqrt{2}"
"|\\vec c|=\\sqrt{0^2+0^2+1^2}=1"
1.
"\\cos \\angle(\\vec a, \\vec b)=\\dfrac{\\vec a \\cdot \\vec b}{|\\vec a||\\vec b|}=\\dfrac{-1}{\\sqrt{2}(\\sqrt{2})}=-\\dfrac{1}{2}""\\angle(\\vec a, \\vec b)=120\\degree"
2.
"\\cos \\angle(\\vec a, \\vec c)=\\dfrac{\\vec a \\cdot \\vec c}{|\\vec a||\\vec c|}=\\dfrac{1}{\\sqrt{2}(1)}=\\dfrac{\\sqrt{2}}{2}""\\angle(\\vec a, \\vec c)=45\\degree"
3.
"\\angle(\\vec b, \\vec c)=135\\degree"
Comments
Leave a comment