Given that x=2cosθ and y=2sinθ evaluate x2+y2
Solution:
"x=2\\cos\u03b8 , y=2\\sin\u03b8"
On squaring both sides of each equation:
"x^2=2^2\\cos^2\u03b8 ,y^2=2^2\\sin^2\u03b8\n\\\\ \\Rightarrow x^2=4\\cos^2\u03b8 ,y^2=4\\sin^2\u03b8"
Now,
"x^2+y^2=4\\cos^2\u03b8 +4\\sin^2\u03b8\n\\\\=4(\\cos^2\u03b8 +\\sin^2\u03b8)\n\\\\=4(1) \\ \\ [\\because \\cos^2A +\\sin^2A=1] \n \\ \\ \\\\=4"
Comments
Leave a comment