Given that x=2cosθ and y=2sinθ evaluate x2+y2
Solution:
x=2cosθ,y=2sinθx=2\cosθ , y=2\sinθx=2cosθ,y=2sinθ
On squaring both sides of each equation:
x2=22cos2θ,y2=22sin2θ⇒x2=4cos2θ,y2=4sin2θx^2=2^2\cos^2θ ,y^2=2^2\sin^2θ \\ \Rightarrow x^2=4\cos^2θ ,y^2=4\sin^2θx2=22cos2θ,y2=22sin2θ⇒x2=4cos2θ,y2=4sin2θ
Now,
x2+y2=4cos2θ+4sin2θ=4(cos2θ+sin2θ)=4(1) [∵cos2A+sin2A=1] =4x^2+y^2=4\cos^2θ +4\sin^2θ \\=4(\cos^2θ +\sin^2θ) \\=4(1) \ \ [\because \cos^2A +\sin^2A=1] \ \ \\=4x2+y2=4cos2θ+4sin2θ=4(cos2θ+sin2θ)=4(1) [∵cos2A+sin2A=1] =4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment