(5.1) The standard form of the equation of the plane is
3 ( x − 1 ) + 1 ( y − ( − 2 ) ) − 1 ( z − 3 ) = 0 3(x-1)+1(y-(-2))-1(z-3)=0 3 ( x − 1 ) + 1 ( y − ( − 2 )) − 1 ( z − 3 ) = 0
3 x + y − z + 2 = 0 3x+y-z+2=0 3 x + y − z + 2 = 0 Parameters: y = s , z = t y=s, z=t y = s , z = t
x = − 2 3 − 1 3 s + 1 3 t x=-\dfrac{2}{3}-\dfrac{1}{3}s+\dfrac{1}{3}t x = − 3 2 − 3 1 s + 3 1 t
y = 0 + 1 s + 0 t y=0+1s+0t y = 0 + 1 s + 0 t
z = 0 + 0 s + 1 t z=0+0s+1t z = 0 + 0 s + 1 t The vector form of the equation of the plane is
r ⃗ = ⟨ 2 3 , 0 , 0 ⟩ + s ⟨ − 1 3 , 1 , 0 ⟩ + t ⟨ 1 3 , 0 , 1 ⟩ \vec r=\langle\dfrac{2}{3},0,0\rangle+s\langle-\dfrac{1}{3},1,0\rangle+t\langle\dfrac{1}{3},0,1\rangle r = ⟨ 3 2 , 0 , 0 ⟩ + s ⟨ − 3 1 , 1 , 0 ⟩ + t ⟨ 3 1 , 0 , 1 ⟩
(5.2)
x − 2 ( y − 1 ) + 3 z = − 1 x −2(y −1) + 3z = −1 x − 2 ( y − 1 ) + 3 z = − 1 y = − 2 x − 1 y = −2x −1 y = − 2 x − 1
y = − 2 x − 1 y=-2x-1 y = − 2 x − 1 x + 4 x + 4 + 3 z = − 1 x+4x+4+3z=-1 x + 4 x + 4 + 3 z = − 1
y = − 2 x − 1 y=-2x-1 y = − 2 x − 1 z = − 5 3 x − 5 3 z=-\dfrac{5}{3}x-\dfrac{5}{3} z = − 3 5 x − 3 5 x ∈ R x\in \R x ∈ R
The intersection between the planes is the line :
⟨ 0 , − 1 , − 5 3 ⟩ + t ⟨ 1 , − 2 , − 5 3 ⟩ , t ∈ R \langle0,-1,-\dfrac{5}{3}\rangle+t\langle1, -2,-\dfrac{5}{3}\rangle, t\in \R ⟨ 0 , − 1 , − 3 5 ⟩ + t ⟨ 1 , − 2 , − 3 5 ⟩ , t ∈ R
The the plane contains the line
x − 0 1 = y + 1 − 2 = z + 5 3 − 5 3 \dfrac{x-0}{1}=\dfrac{y+1}{-2}=\dfrac{z+\dfrac{5}{3}}{-\dfrac{5}{3}} 1 x − 0 = − 2 y + 1 = − 3 5 z + 3 5 An equation for the plane parallel to the line of intersection of the planes
a x + b y + c z + d = 0 , ax+by+cz+d=0, a x + b y + cz + d = 0 , where
a − 2 b − 5 3 c = 0 a-2b-\dfrac{5}{3}c=0 a − 2 b − 3 5 c = 0 The plane contains the line x = − 1 + 3 t , y = 5 + 3 t , z = 2 + t x = −1 + 3t, y = 5 + 3t, z = 2 + t x = − 1 + 3 t , y = 5 + 3 t , z = 2 + t
t = 0 : P o i n t ( − 1 , 5 , 2 ) t=0: Point(-1, 5, 2) t = 0 : P o in t ( − 1 , 5 , 2 )
t = − 2 : P o i n t ( − 7 , − 1 , 0 ) t=-2: Point(-7, -1, 0) t = − 2 : P o in t ( − 7 , − 1 , 0 )
− a + 5 b + 2 c + d = 0 -a+5b+2c+d=0 − a + 5 b + 2 c + d = 0 − 7 a − b + d = 0 -7a-b+d=0 − 7 a − b + d = 0
b = − 7 a + d b=-7a+d b = − 7 a + d − a − 35 a + 5 d + 2 c + d = 0 -a-35a+5d+2c+d=0 − a − 35 a + 5 d + 2 c + d = 0
b = − 7 a + d b=-7a+d b = − 7 a + d c = 18 a − 3 d c=18a-3d c = 18 a − 3 d Substitute
a + 14 a − 2 d − 30 a + 5 d = 0 a+14a-2d-30a+5d=0 a + 14 a − 2 d − 30 a + 5 d = 0
d = 5 a d=5a d = 5 a If a = 1 a=1 a = 1
d = 5 d=5 d = 5
b = − 2 b=-2 b = − 2
c = 3 c=3 c = 3 The equation for the plane is
x − 2 y + 3 z + 5 = 0 , x-2y+3z+5=0, x − 2 y + 3 z + 5 = 0 ,
Comments