<3,−1,2>+t<1,1,−1>x=3+t,y=−1+t,z=2−t
(4.1)
To show that the Line lies on the plane −2x + 3y − 4z + 1 = 0
−2(3+t)+3(−1+t)−4(2−t)+1−6−2t−3+3t−8+4t+1=5t−16=0t=516x=3+t=531y=−1+t=511z=2−t=5−6−2x+3y−4z−1=−2×531+3×511−4×5−6+1=0
Hence it lies on the plane -2x+3y-4z+1=0
(4.2)
ro=<3,−2,4>x=−8−3t,y=2+2t,z=−7ta=−3b=2c=−7a(x−xo)+b(y−yo)+c(z−zo)=0−3(x−3)+2(y−(−2))−7(z−4)=03x−2y+7z=41
Comments
thanks