a) n ⃗ 1 = ( 1 , 1 , 3 ) , n ⃗ 2 = ( 1 , 2 , − 1 ) \vec n_1=(1,1,3), \vec n_2=(1, 2, -1) n 1 = ( 1 , 1 , 3 ) , n 2 = ( 1 , 2 , − 1 )
n ⃗ 1 ⋅ n ⃗ 2 = 1 ( 1 ) + 1 ( 2 ) + 3 ( − 1 ) = 0 \vec n_1\cdot\vec n_2=1(1)+1(2)+3(-1)=0 n 1 ⋅ n 2 = 1 ( 1 ) + 1 ( 2 ) + 3 ( − 1 ) = 0 The given planes are perpendicular.
b) n ⃗ 1 = ( 3 , − 2 , 1 ) , n ⃗ 2 = ( 4 , 2 , − 4 ) \vec n_1=(3,-2,1), \vec n_2=(4, 2, -4) n 1 = ( 3 , − 2 , 1 ) , n 2 = ( 4 , 2 , − 4 )
n ⃗ 1 ⋅ n ⃗ 2 = 3 ( 4 ) − 2 ( 2 ) + 1 ( − 4 ) = 4 ≠ 0 \vec n_1\cdot\vec n_2=3(4)-2(2)+1(-4)=4\not=0 n 1 ⋅ n 2 = 3 ( 4 ) − 2 ( 2 ) + 1 ( − 4 ) = 4 = 0 4 3 ≠ 2 − 2 \dfrac{4}{3}\not=\dfrac{2}{-2} 3 4 = − 2 2 The given planes are neither perpendicular nor parallel.
c) n ⃗ 1 = ( 3 , 1 , 1 ) , n ⃗ 2 = ( − 1 , 2 , 1 ) \vec n_1=(3,1,1), \vec n_2=(-1, 2, 1) n 1 = ( 3 , 1 , 1 ) , n 2 = ( − 1 , 2 , 1 )
n ⃗ 1 ⋅ n ⃗ 2 = 3 ( − 1 ) + 1 ( 2 ) + 1 ( 1 ) = 0 \vec n_1\cdot\vec n_2=3(-1)+1(2)+1(1)=0 n 1 ⋅ n 2 = 3 ( − 1 ) + 1 ( 2 ) + 1 ( 1 ) = 0 The given planes are perpendicular.
Comments