1)xo=1yo=−2zo=3a=3b=1c=−1a(x−xo)+b(y−yo)+c(z−zo)=03(x−1)+1(y−(−2))−1(z−3)=03x+y−z+2=0Let y=s,z=tx=−32−31s+31ty=0+1s+0tz=0+0s+1t
Vector form becomes
<−32,0,0>+s<−31,1,0>+t<31,0,1>
2)
x−2(y−1)+3z=−1y=−2x−1y=−2x−1x+4x+4+3z=−1y=−2x−1z=−35x−35<0,−1,−35>+t<1,−2,−35>The plane contains the line1x−0=−2y+1=−35z+35An equation for the plane parallel tothe line of intersection of the planesax+by+cz+d=0,ax+by+cz+d=0,wherea−2b−35c=0The plane contains the linex=−1+3t,y=5+3t,z=2+tt=0:Point(−1,5,2)t=−2:Point(−7,−1,0)−a+5b+2c+d=0−7a−b+d=0b=−7a+d−a−35a+5d+2c+d=0b=−7a+dc=18a−3dSubstitutea+14a−2d−30a+5d=0d=5aIf a=1d=5b=−2c=3The equation for the plane isx−2y+3z+5=0
Comments