QUESTION 1
Let "p.M\\left(x,y,z\\right)" another point on the straight line, the equation of which we are looking for.
Then, "\\overrightarrow{PM}||\\overrightarrow{n}, \\,\\,\\,\\overrightarrow{n}=\\left(2,1,3\\right)-\\text{specified by condition}" .
"\\left\\{\\begin{array}{l}\np.P\\left(2,0,-1\\right)\\\\[0.3cm]\np.M\\left(x,y,z\\right)\n\\end{array}\\right.\\rightarrow\\overrightarrow{PM}\\left(x-2,y,z+1\\right)\\\\[0.3cm]\n\\overrightarrow{PM}||\\overrightarrow{n}\\rightarrow\\frac{x-2}{2}=\\frac{y}{1}=\\frac{z+1}{3}=t\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\nx-2=2t\\\\[0.3cm]\ny=t\\\\[0.3cm]\nz+1=3t\n\\end{array}\\right.\\longrightarrow\n\\left\\{\\begin{array}{l}\nx=2+2t\\\\[0.3cm]\ny=t\\\\[0.3cm]\nz=-1+3t\n\\end{array}\\right."
ANSWER
"\\left\\{\\begin{array}{l}\nx=2+2t\\\\[0.3cm]\ny=t\\\\[0.3cm]\nz=-1+3t\n\\end{array}\\right."
QUESRION 2
As we know, the parametric equation of the straight line has the form
"\\left\\{\\begin{array}{l}\nx=x_0+at\\\\[0.3cm]\ny=y_0+bt\\\\[0.3cm]\nz=z_0+ct\n\\end{array}\\right.,\\,\\,\\,\\text{where}\n\\left\\{\\begin{array}{l}\np.M\\left(x_0,y_0,z_0\\right)-\\text{any point on the line}\\\\[0.3cm]\n\\overrightarrow{n}=\\left(a,b,c\\right)-\\text{direction vector}\n\\end{array}\\right."
In our case, since by the problem statement we know two points "p.A=\\left(1, 2, - 3\\right)" and "p.B=\\left(7, 2, - 4\\right)" through which the straight line passes, then
"\\overrightarrow{n}=\\overrightarrow{AB}=\\left(7-1,2-2,-4-\\left(-3\\right)\\right)\\\\[0.3cm]\n\\boxed{\\overrightarrow{n}=\\left(6,0,-1\\right)}"
As an "unknown" "p.M\\left(x_0,y_0,z_0\\right)" , I propose to take "p.A=\\left(1,2,-3\\right)" from the condition.
Then,
"\\left\\{\\begin{array}{l}\nx=1+6t\\\\[0.3cm]\ny=2\\\\[0.3cm]\nz=-3-t\n\\end{array}\\right."
ANSWER
"\\left\\{\\begin{array}{l}\nx=1+6t\\\\[0.3cm]\ny=2\\\\[0.3cm]\nz=-3-t\n\\end{array}\\right."
QUESTION 3
From the beginning, we find any point "p.M\\left(x_0,y_0,z_0\\right)" on the desired straight line, for this we solve the system of equations
"\\left\\{\\begin{array}{l}\n- 5x + y - 2z =3\\to y=3+5x+2z\\\\[0.3cm]\n2x - 3y + 5z =-7\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\ny=3+5x+2z\\\\[0.3cm]\n2x - 3\\cdot\\left(3+5x+2z\\right) + 5z =-7\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\ny=3+5x+2z\\\\[0.3cm]\n2x - 9-15x-6z + 5z =-7\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\ny=3+5x+2z\\\\[0.3cm]\n-13x-z =2\\to z=-2-13x\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\ny=3+5x+2\\cdot\\left(-2-13x\\right)\\\\[0.3cm]\nz=-2-13x\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\ny=-1-21x\\\\[0.3cm]\nz=-2-13x\\\\[0.3cm]\nx=Const\n\\end{array}\\right.\\\\[0.3cm]"
Let "x=0\\longrightarrow \\boxed{p.M\\left(0,-1,-2\\right)}" .
As we know, from the canonical equation of the plane we can find the coordinates of the normal vector as follows
"l : ax+by+cz+d=0\\to\\overrightarrow{n_l}=\\left(a,b,c\\right)"( more information : https://en.wikipedia.org/wiki/Normal_(geometry) )
In our case,
"\\left\\{\\begin{array}{l}\nl_1 :-5x + y - 2z =3\\to\\overrightarrow{n_{l_1}}=\\left(-5,1,-2\\right)\\\\[0.3cm]\nl_2 :2x - 3y + 5z =-7\\to\\overrightarrow{n_{l_2}}=\\left(2,-3,5\\right)\n\\end{array}\\right."
Then,
"\\overrightarrow{n}=\\overrightarrow{n_{l_1}}\\times\\overrightarrow{n_{l_2}}-\\text{direction vector}\\\\[0.3cm]"
"\\overrightarrow{n}=\\left|\\begin{array}{ccc}\n\\overrightarrow{i}&\\overrightarrow{j}&\\overrightarrow{k}\\\\[0.3cm]\n-5&1&-2\\\\[0.3cm]\n2&-3&5\n\\end{array}\\right|=\\\\[0.3cm]\n=\\overrightarrow{i}\\cdot\\left(5-6\\right)-\\overrightarrow{j}\\cdot\\left(-25+4\\right)+\\overrightarrow{k}\\cdot\\left(15-2\\right)=\\\\[0.3cm]\n=-1\\cdot\\overrightarrow{i}+21\\cdot\\overrightarrow{j}+13\\cdot\\overrightarrow{k}\\\\[0.3cm]\n\\boxed{\\overrightarrow{n}=\\left(-1,21,13\\right)}\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\np.M\\left(0,-1,-2\\right)\\\\[0.3cm]\n\\overrightarrow{n}=\\left(-1,21,13\\right)\n\\end{array}\\right.\\longrightarrow\n\\left\\{\\begin{array}{l}\nx=-t\\\\[0.3cm]\ny=-1+21t\\\\[0.3cm]\nz=-2+13t\n\\end{array}\\right."
ANSWER
"\\left\\{\\begin{array}{l}\nx=-t\\\\[0.3cm]\ny=-1+21t\\\\[0.3cm]\nz=-2+13t\n\\end{array}\\right."
Comments
Leave a comment