l e t a = ( 1 , 2 , 1 ) b = ( 2 , 0 , 2 ) let\space a=(1,\sqrt2,1)\\b=(2,0,2)\\ l e t a = ( 1 , 2 , 1 ) b = ( 2 , 0 , 2 )
a.
c o s ( θ ) = a . b ∣ a ∣ . ∣ b ∣ cos(\theta)=\frac{a.b}{|a|.|b|}\\ cos ( θ ) = ∣ a ∣.∣ b ∣ a . b
= ( 1 , 2 , 1 ) . ( 2 , 0 , 2 ) 1 + 2 + 1 4 + 4 =\frac{(1,\sqrt2,1).(2,0,2)}{\sqrt{1+2+1}{\sqrt{4+4}}} = 1 + 2 + 1 4 + 4 ( 1 , 2 , 1 ) . ( 2 , 0 , 2 )
= 2 + 2 4 8 = 4 2.2 2 =\frac{2+2}{\sqrt4 \sqrt8}=\frac{4}{2.2\sqrt2} = 4 8 2 + 2 = 2.2 2 4
= 1 2 =\frac{1}{\sqrt2} = 2 1
θ = c o s − 1 ( 1 2 ) θ = 45 ° \theta=cos^{-1}(\frac{1}{\sqrt2})\\\theta=45\degree θ = co s − 1 ( 2 1 ) θ = 45°
b.
Projection of a in direction of b
= a ⃗ . b ⃗ ∣ b ⃗ ∣ o r ∣ a ⃗ ∣ c o s θ =\frac{\vec{a}.\vec{b}}{|\vec{b}|}\space or\space |\vec{a}|cos\theta = ∣ b ∣ a . b or ∣ a ∣ cos θ
& ∣ b ⃗ ∣ = 8 \&\space |\vec{b}|=\sqrt8 & ∣ b ∣ = 8
= 4 8 = 4 2 2 = 2 2 = 2 =\frac{4}{\sqrt8}=\frac{4}{2\sqrt2}=\frac{2}{\sqrt2}=\sqrt2 = 8 4 = 2 2 4 = 2 2 = 2
Comments