Question #212266

Let vector a=(1,sqrt(2),1)a = (1, sqrt(2) ,1) and vector b=(2,0,2)b = (2,0,2)

  1. Find the angle θ\theta between the 2 vectors.
  2. Find the projection of a in the direction of b
1
Expert's answer
2021-07-06T08:28:48-0400

let a=(1,2,1)b=(2,0,2)let\space a=(1,\sqrt2,1)\\b=(2,0,2)\\

a.

cos(θ)=a.ba.bcos(\theta)=\frac{a.b}{|a|.|b|}\\

=(1,2,1).(2,0,2)1+2+14+4=\frac{(1,\sqrt2,1).(2,0,2)}{\sqrt{1+2+1}{\sqrt{4+4}}}


=2+248=42.22=\frac{2+2}{\sqrt4 \sqrt8}=\frac{4}{2.2\sqrt2}


=12=\frac{1}{\sqrt2}


θ=cos1(12)θ=45°\theta=cos^{-1}(\frac{1}{\sqrt2})\\\theta=45\degree



b.

Projection of a in direction of b

=a.bb or acosθ=\frac{\vec{a}.\vec{b}}{|\vec{b}|}\space or\space |\vec{a}|cos\theta


& b=8\&\space |\vec{b}|=\sqrt8


=48=422=22=2=\frac{4}{\sqrt8}=\frac{4}{2\sqrt2}=\frac{2}{\sqrt2}=\sqrt2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS