Question #205618

Find the section of the conicoid (x/2) − (y 2/ 3 )= 2z by the plane x− 2y+ z = 1. What conic does this section represent? Justify your answer.


1
Expert's answer
2021-06-13T16:06:46-0400

Let us find the section of the conicoid x22y23=2z\frac{x^2}{2} −\frac{y^2}{3}= 2z  by the plane x− 2y+ z = 1.


It follows that x22y23=2(1x+2y),\frac{x^2}{2} −\frac{y^2}{3}= 2(1-x+2y), and therefore x22y23+2x4y2=0.\frac{x^2}{2} −\frac{y^2}{3}+2x-4y-2=0. The last equality equivalent to 3x22y2+12x24y12=0,3x^2-2y^2+12x-24y-12=0, and thus 3(x2+4x)2(y2+12y)12=0.3(x^2+4x)-2(y^2+12y)-12=0. It follows that 3(x+2)22(y+6)2=48,3(x+2)^2-2(y+6)^2=-48, and consequently the equation of the section is (y+6)224(x+2)216=1.\frac{(y+6)^2}{24}-\frac{(x+2)^2}{16}=1.

It follows that this section represents a hyperbola.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS