Answer to Question #204308 in Analytic Geometry for Frank

Question #204308

The planes pie1 and pie2 have cartesian equations x-y+z+1=0 and 2x+y-z-1=0 respectively.

(a) Show that these two planes are not parallel.

(b) Find a parametric equation of their line of intersection

(c)Give a cartesian equation of plane pie3 passing through point A(1,-1,-1) and perpendicular to pie1 and pie2.


1
Expert's answer
2021-06-08T14:31:36-0400

a) two planes A1x+B1y+C1z+D1=0A_1x+B_1y+C_1z+D_1=0 and A2x+B2y+C2z+D2=0A_2x+B_2y+C_2z+D_2=0 are parallel if A1A2=B1B2=C1C2.\dfrac{A_1}{A_2} = \dfrac{B_1}{B_2} = \dfrac{C_1}{C_2} .

In our case A1A2=12,  B1B2=11,  C1C2=11\dfrac{A_1}{A_2} = \dfrac{1}{2}, \; \dfrac{B_1}{B_2} = \dfrac{-1}{1}, \; \dfrac{C_1}{C_2} = \dfrac{1}{-1} , these numbers are not the same, so the planes are not parallel.


b) the coordinates of points on the line of intersection satisfy the equations

{xy+z+1=0,2x+yz1=0\begin{cases} x-y+z+1 = 0, \\ 2x+y-z-1 = 0 \end{cases}

{xy+z=1,2x+yz=1\begin{cases} x-y+z=-1, \\ 2x+y-z=1 \end{cases}

The equivalent matrices:

[11112111]\begin{bmatrix} 1 & -1 & 1 & -1 \\ 2 & 1 & -1 & 1 \end{bmatrix} , [11110323232],[10000323232],\begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & -\dfrac32 & \dfrac32 & -\dfrac32 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -\dfrac32 & \dfrac32 & -\dfrac32 \end{bmatrix},

[10000111],\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 &1 \end{bmatrix},

{x=0+0t,y=1+t,0=0+t.\begin{cases} x = 0 + 0t, \\ y = 1 + t,\\ 0 = 0 + t. \end{cases}


c) Let the equation of the third plane be A3x+B3y+C3z+D3=0.A_3x+B_3y+C_3z + D_3 = 0.

It is perpendicular to pi_1 and pi_2, so

1A31B3+1C3=0,2A3+1B31C3=01\cdot A_3 - 1\cdot B_3 + 1\cdot C_3 = 0, \\ 2\cdot A_3 + 1\cdot B_3 - 1\cdot C_3 = 0 , therefore A3=0,A_3 = 0, B3=C3.B_3 = C_3. Let B3=1.B_3 = 1.

A(1,-1,-1) belongs to plane, so A31+B3(1)+C3(1)+D3=0,A_3\cdot 1 + B_3\cdot (-1) + C_3\cdot(-1) + D_3 = 0,

011+D3=0,D3=2.0 - 1 - 1 + D_3 = 0, D_3 = 2.

So the equation of the plane is y+z+2=0.y+z+2 = 0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment