a) two planes A 1 x + B 1 y + C 1 z + D 1 = 0 A_1x+B_1y+C_1z+D_1=0 A 1 x + B 1 y + C 1 z + D 1 = 0 and A 2 x + B 2 y + C 2 z + D 2 = 0 A_2x+B_2y+C_2z+D_2=0 A 2 x + B 2 y + C 2 z + D 2 = 0 are parallel if A 1 A 2 = B 1 B 2 = C 1 C 2 . \dfrac{A_1}{A_2} = \dfrac{B_1}{B_2} = \dfrac{C_1}{C_2} . A 2 A 1 = B 2 B 1 = C 2 C 1 .
In our case A 1 A 2 = 1 2 , B 1 B 2 = − 1 1 , C 1 C 2 = 1 − 1 \dfrac{A_1}{A_2} = \dfrac{1}{2}, \; \dfrac{B_1}{B_2} = \dfrac{-1}{1}, \; \dfrac{C_1}{C_2} = \dfrac{1}{-1} A 2 A 1 = 2 1 , B 2 B 1 = 1 − 1 , C 2 C 1 = − 1 1 , these numbers are not the same, so the planes are not parallel.
b) the coordinates of points on the line of intersection satisfy the equations
{ x − y + z + 1 = 0 , 2 x + y − z − 1 = 0 \begin{cases}
x-y+z+1 = 0, \\
2x+y-z-1 = 0
\end{cases} { x − y + z + 1 = 0 , 2 x + y − z − 1 = 0
{ x − y + z = − 1 , 2 x + y − z = 1 \begin{cases}
x-y+z=-1, \\
2x+y-z=1
\end{cases} { x − y + z = − 1 , 2 x + y − z = 1
The equivalent matrices:
[ 1 − 1 1 − 1 2 1 − 1 1 ] \begin{bmatrix}
1 & -1 & 1 & -1 \\
2 & 1 & -1 & 1
\end{bmatrix} [ 1 2 − 1 1 1 − 1 − 1 1 ] , [ 1 − 1 1 − 1 0 − 3 2 3 2 − 3 2 ] , [ 1 0 0 0 0 − 3 2 3 2 − 3 2 ] , \begin{bmatrix}
1 & -1 & 1 & -1 \\
0 & -\dfrac32 & \dfrac32 & -\dfrac32
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -\dfrac32 & \dfrac32 & -\dfrac32
\end{bmatrix}, [ 1 0 − 1 − 2 3 1 2 3 − 1 − 2 3 ] , [ 1 0 0 − 2 3 0 2 3 0 − 2 3 ] ,
[ 1 0 0 0 0 1 − 1 1 ] , \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & -1 &1
\end{bmatrix}, [ 1 0 0 1 0 − 1 0 1 ] ,
{ x = 0 + 0 t , y = 1 + t , 0 = 0 + t . \begin{cases}
x = 0 + 0t, \\
y = 1 + t,\\
0 = 0 + t.
\end{cases} ⎩ ⎨ ⎧ x = 0 + 0 t , y = 1 + t , 0 = 0 + t .
c) Let the equation of the third plane be A 3 x + B 3 y + C 3 z + D 3 = 0. A_3x+B_3y+C_3z + D_3 = 0. A 3 x + B 3 y + C 3 z + D 3 = 0.
It is perpendicular to pi_1 and pi_2, so
1 ⋅ A 3 − 1 ⋅ B 3 + 1 ⋅ C 3 = 0 , 2 ⋅ A 3 + 1 ⋅ B 3 − 1 ⋅ C 3 = 0 1\cdot A_3 - 1\cdot B_3 + 1\cdot C_3 = 0, \\
2\cdot A_3 + 1\cdot B_3 - 1\cdot C_3 = 0 1 ⋅ A 3 − 1 ⋅ B 3 + 1 ⋅ C 3 = 0 , 2 ⋅ A 3 + 1 ⋅ B 3 − 1 ⋅ C 3 = 0 , therefore A 3 = 0 , A_3 = 0, A 3 = 0 , B 3 = C 3 . B_3 = C_3. B 3 = C 3 . Let B 3 = 1. B_3 = 1. B 3 = 1.
A(1,-1,-1) belongs to plane, so A 3 ⋅ 1 + B 3 ⋅ ( − 1 ) + C 3 ⋅ ( − 1 ) + D 3 = 0 , A_3\cdot 1 + B_3\cdot (-1) + C_3\cdot(-1) + D_3 = 0, A 3 ⋅ 1 + B 3 ⋅ ( − 1 ) + C 3 ⋅ ( − 1 ) + D 3 = 0 ,
0 − 1 − 1 + D 3 = 0 , D 3 = 2. 0 - 1 - 1 + D_3 = 0, D_3 = 2. 0 − 1 − 1 + D 3 = 0 , D 3 = 2.
So the equation of the plane is y + z + 2 = 0. y+z+2 = 0. y + z + 2 = 0.
Comments