We have Q=xTAx, where
A=[433−4],x=[x1x2]
∣∣4−λ33−4−λ∣∣=0
(4−λ)(−4−λ)−9=0
λ2−25=0
λ1=−5,λ2=5
These are the eigenvalues.
Hence
Q=−5y12+5y22We see that Q=10 represents the hyperbola −5y12+5y22=10
λ=−5
[4−λ33−4−λ]=[9331] R1=R1/3
[131/31] R2=R2−3R1
[101/30] If we take x2=t, then x1=−t/3.
Thus
x=[−t/3t]=[−1/31]t
λ=5
[4−λ33−4−λ]=[−133−9] R1=−R1
[13−3−9] R2=R2−3R1
[10−30] If we take x2=t, then x1=3t.
Thus
x=[3tt]=[31]t
103[−1/31]=[−1/103/10]
101[31]=[3/101/10] Hence
x=[−1/103/103/101/10][y1y2]
x1=−101y1+103y2
x2=103y1+101y2
Comments