Question #203160

What kind of conic section the following quadratic form represents and transform it to principal axes.

4x21 + 6x1x2 − 4x22 = 10.


1
Expert's answer
2021-06-07T11:53:12-0400

We have Q=xTAx,Q=x^TAx, where


A=[4334],x=[x1x2]A=\begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}, x=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}

4λ334λ=0\begin{vmatrix} 4-\lambda & 3 \\ 3 & -4-\lambda \end{vmatrix}=0


(4λ)(4λ)9=0(4-\lambda)(-4-\lambda)-9=0

λ225=0\lambda^2-25=0

λ1=5,λ2=5\lambda_1=-5, \lambda_2=5

These are the eigenvalues.

Hence


Q=5y12+5y22Q=-5y_1^2+5y_2^2

We see that Q=10Q=10 represents the hyperbola 5y12+5y22=10-5y_1^2+5y_2^2=10

λ=5\lambda=-5


[4λ334λ]=[9331]\begin{bmatrix} 4-\lambda & 3 \\ 3 & -4-\lambda \end{bmatrix}=\begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}

R1=R1/3R_1=R_1/3

[11/331]\begin{bmatrix} 1 & 1/3 \\ 3 & 1 \end{bmatrix}

R2=R23R1R_2=R_2-3R_1


[11/300]\begin{bmatrix} 1 & 1/3 \\ 0 & 0 \end{bmatrix}

If we take x2=t,x_2=t, then x1=t/3.x_1=-t/3.

Thus

x=[t/3t]=[1/31]tx=\begin{bmatrix} -t/3\\ t \end{bmatrix}=\begin{bmatrix} -1/3\\ 1 \end{bmatrix}t


λ=5\lambda=5

[4λ334λ]=[1339]\begin{bmatrix} 4-\lambda & 3 \\ 3 & -4-\lambda \end{bmatrix}=\begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix}

R1=R1R_1=-R_1

[1339]\begin{bmatrix} 1 & -3 \\ 3 & -9 \end{bmatrix}

R2=R23R1R_2=R_2-3R_1

[1300]\begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}

If we take x2=t,x_2=t, then x1=3t.x_1=3t.

Thus

x=[3tt]=[31]tx=\begin{bmatrix} 3t\\ t \end{bmatrix}=\begin{bmatrix} 3\\ 1 \end{bmatrix}t



310[1/31]=[1/103/10]\dfrac{3}{\sqrt{10}}\begin{bmatrix} -1/3\\ 1 \end{bmatrix}=\begin{bmatrix} -1/\sqrt{10}\\ 3/\sqrt{10} \end{bmatrix}


110[31]=[3/101/10]\dfrac{1}{\sqrt{10}}\begin{bmatrix} 3\\ 1 \end{bmatrix}=\begin{bmatrix} 3/\sqrt{10}\\ 1/\sqrt{10} \end{bmatrix}

Hence


x=[1/103/103/101/10][y1y2]x=\begin{bmatrix} -1/\sqrt{10} & 3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix}\begin{bmatrix} y_1\\ y_2 \end{bmatrix}

x1=110y1+310y2x_1=-\dfrac{1}{\sqrt{10}}y_1+\dfrac{3}{\sqrt{10}}y_2

x2=310y1+110y2x_2=\dfrac{3}{\sqrt{10}}y_1+\dfrac{1}{\sqrt{10}}y_2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS