What kind of conic section the following quadratic form represents and transform it to principal axes.
4x21 + 6x1x2 − 4x22 = 10.
We have "Q=x^TAx," where
"\\begin{vmatrix}\n 4-\\lambda & 3 \\\\\n 3 & -4-\\lambda\n\\end{vmatrix}=0"
"\\lambda^2-25=0"
"\\lambda_1=-5, \\lambda_2=5"
These are the eigenvalues.
Hence
We see that "Q=10" represents the hyperbola "-5y_1^2+5y_2^2=10"
"\\lambda=-5"
"R_1=R_1\/3"
"\\begin{bmatrix}\n 1 & 1\/3 \\\\\n 3 & 1\n\\end{bmatrix}"
"R_2=R_2-3R_1"
If we take "x_2=t," then "x_1=-t\/3."
Thus
"x=\\begin{bmatrix}\n -t\/3\\\\\n t\n\\end{bmatrix}=\\begin{bmatrix}\n -1\/3\\\\\n 1\n\\end{bmatrix}t"
"\\lambda=5"
"\\begin{bmatrix}\n 4-\\lambda & 3 \\\\\n 3 & -4-\\lambda\n\\end{bmatrix}=\\begin{bmatrix}\n -1 & 3 \\\\\n 3 & -9\n\\end{bmatrix}""R_1=-R_1"
"\\begin{bmatrix}\n 1 & -3 \\\\\n 3 & -9\n\\end{bmatrix}""R_2=R_2-3R_1"
"\\begin{bmatrix}\n 1 & -3 \\\\\n 0 & 0\n\\end{bmatrix}"If we take "x_2=t," then "x_1=3t."
Thus
"x=\\begin{bmatrix}\n 3t\\\\\n t\n\\end{bmatrix}=\\begin{bmatrix}\n 3\\\\\n 1\n\\end{bmatrix}t"
Hence
"x_1=-\\dfrac{1}{\\sqrt{10}}y_1+\\dfrac{3}{\\sqrt{10}}y_2"
"x_2=\\dfrac{3}{\\sqrt{10}}y_1+\\dfrac{1}{\\sqrt{10}}y_2"
Comments
Leave a comment