We have Q = x T A x , Q=x^TAx, Q = x T A x , where
A = [ 4 3 3 − 4 ] , x = [ x 1 x 2 ] A=\begin{bmatrix}
4 & 3 \\
3 & -4
\end{bmatrix}, x=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} A = [ 4 3 3 − 4 ] , x = [ x 1 x 2 ]
∣ 4 − λ 3 3 − 4 − λ ∣ = 0 \begin{vmatrix}
4-\lambda & 3 \\
3 & -4-\lambda
\end{vmatrix}=0 ∣ ∣ 4 − λ 3 3 − 4 − λ ∣ ∣ = 0
( 4 − λ ) ( − 4 − λ ) − 9 = 0 (4-\lambda)(-4-\lambda)-9=0 ( 4 − λ ) ( − 4 − λ ) − 9 = 0
λ 2 − 25 = 0 \lambda^2-25=0 λ 2 − 25 = 0
λ 1 = − 5 , λ 2 = 5 \lambda_1=-5, \lambda_2=5 λ 1 = − 5 , λ 2 = 5
These are the eigenvalues.
Hence
Q = − 5 y 1 2 + 5 y 2 2 Q=-5y_1^2+5y_2^2 Q = − 5 y 1 2 + 5 y 2 2 We see that Q = 10 Q=10 Q = 10 represents the hyperbola − 5 y 1 2 + 5 y 2 2 = 10 -5y_1^2+5y_2^2=10 − 5 y 1 2 + 5 y 2 2 = 10
λ = − 5 \lambda=-5 λ = − 5
[ 4 − λ 3 3 − 4 − λ ] = [ 9 3 3 1 ] \begin{bmatrix}
4-\lambda & 3 \\
3 & -4-\lambda
\end{bmatrix}=\begin{bmatrix}
9 & 3 \\
3 & 1
\end{bmatrix} [ 4 − λ 3 3 − 4 − λ ] = [ 9 3 3 1 ] R 1 = R 1 / 3 R_1=R_1/3 R 1 = R 1 /3
[ 1 1 / 3 3 1 ] \begin{bmatrix}
1 & 1/3 \\
3 & 1
\end{bmatrix} [ 1 3 1/3 1 ] R 2 = R 2 − 3 R 1 R_2=R_2-3R_1 R 2 = R 2 − 3 R 1
[ 1 1 / 3 0 0 ] \begin{bmatrix}
1 & 1/3 \\
0 & 0
\end{bmatrix} [ 1 0 1/3 0 ] If we take x 2 = t , x_2=t, x 2 = t , then x 1 = − t / 3. x_1=-t/3. x 1 = − t /3.
Thus
x = [ − t / 3 t ] = [ − 1 / 3 1 ] t x=\begin{bmatrix}
-t/3\\
t
\end{bmatrix}=\begin{bmatrix}
-1/3\\
1
\end{bmatrix}t x = [ − t /3 t ] = [ − 1/3 1 ] t
λ = 5 \lambda=5 λ = 5
[ 4 − λ 3 3 − 4 − λ ] = [ − 1 3 3 − 9 ] \begin{bmatrix}
4-\lambda & 3 \\
3 & -4-\lambda
\end{bmatrix}=\begin{bmatrix}
-1 & 3 \\
3 & -9
\end{bmatrix} [ 4 − λ 3 3 − 4 − λ ] = [ − 1 3 3 − 9 ] R 1 = − R 1 R_1=-R_1 R 1 = − R 1
[ 1 − 3 3 − 9 ] \begin{bmatrix}
1 & -3 \\
3 & -9
\end{bmatrix} [ 1 3 − 3 − 9 ] R 2 = R 2 − 3 R 1 R_2=R_2-3R_1 R 2 = R 2 − 3 R 1
[ 1 − 3 0 0 ] \begin{bmatrix}
1 & -3 \\
0 & 0
\end{bmatrix} [ 1 0 − 3 0 ] If we take x 2 = t , x_2=t, x 2 = t , then x 1 = 3 t . x_1=3t. x 1 = 3 t .
Thus
x = [ 3 t t ] = [ 3 1 ] t x=\begin{bmatrix}
3t\\
t
\end{bmatrix}=\begin{bmatrix}
3\\
1
\end{bmatrix}t x = [ 3 t t ] = [ 3 1 ] t
3 10 [ − 1 / 3 1 ] = [ − 1 / 10 3 / 10 ] \dfrac{3}{\sqrt{10}}\begin{bmatrix}
-1/3\\
1
\end{bmatrix}=\begin{bmatrix}
-1/\sqrt{10}\\
3/\sqrt{10}
\end{bmatrix} 10 3 [ − 1/3 1 ] = [ − 1/ 10 3/ 10 ]
1 10 [ 3 1 ] = [ 3 / 10 1 / 10 ] \dfrac{1}{\sqrt{10}}\begin{bmatrix}
3\\
1
\end{bmatrix}=\begin{bmatrix}
3/\sqrt{10}\\
1/\sqrt{10}
\end{bmatrix} 10 1 [ 3 1 ] = [ 3/ 10 1/ 10 ] Hence
x = [ − 1 / 10 3 / 10 3 / 10 1 / 10 ] [ y 1 y 2 ] x=\begin{bmatrix}
-1/\sqrt{10} & 3/\sqrt{10} \\
3/\sqrt{10} & 1/\sqrt{10}
\end{bmatrix}\begin{bmatrix}
y_1\\
y_2
\end{bmatrix} x = [ − 1/ 10 3/ 10 3/ 10 1/ 10 ] [ y 1 y 2 ]
x 1 = − 1 10 y 1 + 3 10 y 2 x_1=-\dfrac{1}{\sqrt{10}}y_1+\dfrac{3}{\sqrt{10}}y_2 x 1 = − 10 1 y 1 + 10 3 y 2
x 2 = 3 10 y 1 + 1 10 y 2 x_2=\dfrac{3}{\sqrt{10}}y_1+\dfrac{1}{\sqrt{10}}y_2 x 2 = 10 3 y 1 + 10 1 y 2
Comments