To find the cross product, we form a determinant the first row of which is a unit vector, the second row is our first vector, and the third row is our second vector
( 3 2 0 ) × ( 2 − 1 − 2 ) = ∣ i j k 3 2 0 2 − 1 − 2 ∣ \begin{pmatrix}
3 \\
2 \\
0
\end{pmatrix} \times \begin{pmatrix}
2 \\
-1 \\
-2
\end{pmatrix}= \begin{vmatrix}
i & j & k\\
3 & 2 & 0\\
2 & -1 & -2
\end{vmatrix} ⎝ ⎛ 3 2 0 ⎠ ⎞ × ⎝ ⎛ 2 − 1 − 2 ⎠ ⎞ = ∣ ∣ i 3 2 j 2 − 1 k 0 − 2 ∣ ∣
( 3 2 0 ) × ( 2 − 1 − 2 ) = ∣ 2 0 − 1 − 2 ∣ i − ∣ 3 0 2 − 2 ∣ j + ∣ 3 2 2 − 1 ∣ k \begin{pmatrix}
3 \\
2 \\
0
\end{pmatrix} \times \begin{pmatrix}
2 \\
-1 \\
-2
\end{pmatrix}= \begin{vmatrix}
2 & 0 \\
-1 & -2
\end{vmatrix}i - \begin{vmatrix}
3 & 0 \\
2 & -2
\end{vmatrix} j+\begin{vmatrix}
3 & 2 \\
2 & -1
\end{vmatrix}k ⎝ ⎛ 3 2 0 ⎠ ⎞ × ⎝ ⎛ 2 − 1 − 2 ⎠ ⎞ = ∣ ∣ 2 − 1 0 − 2 ∣ ∣ i − ∣ ∣ 3 2 0 − 2 ∣ ∣ j + ∣ ∣ 3 2 2 − 1 ∣ ∣ k
( ( 2 ) . ( − 2 ) − ( 0 ) . ( − 1 ) ) i − ( ( 3 ) . ( − 2 ) − ( 0 ) . ( 2 ) ) j + ( ( 3 ) . ( − 1 ) − ( 2 ) . ( 2 ) ) k ((2).(-2)-(0).(-1))i-((3).(-2)-(0).(2))j+((3).(-1)-(2).(2))k (( 2 ) . ( − 2 ) − ( 0 ) . ( − 1 )) i − (( 3 ) . ( − 2 ) − ( 0 ) . ( 2 )) j + (( 3 ) . ( − 1 ) − ( 2 ) . ( 2 )) k
− 4 i + 6 j − 7 k -4i+6j-7k − 4 i + 6 j − 7 k
( 3 2 0 ) × ( 2 − 1 − 2 ) = ( − 4 6 − 7 ) \begin{pmatrix}
3 \\
2 \\
0
\end{pmatrix} \times \begin{pmatrix}
2 \\
-1 \\
-2
\end{pmatrix}= \begin{pmatrix}
-4 \\
6 \\
-7
\end{pmatrix} ⎝ ⎛ 3 2 0 ⎠ ⎞ × ⎝ ⎛ 2 − 1 − 2 ⎠ ⎞ = ⎝ ⎛ − 4 6 − 7 ⎠ ⎞
To confirm that this vector is perpendicular we can check the dot product is zero:
⟨ 3 , 2 , 0 ⟩ ⋅ ⟨ − 4 , 6 , − 7 ⟩ = − 12 + 12 + 0 = 0 ⟨ 3, 2 , 0⟩⋅⟨ -4 , 6, -7⟩ = -12+ 12 + 0 = 0 ⟨ 3 , 2 , 0 ⟩ ⋅ ⟨ − 4 , 6 , − 7 ⟩ = − 12 + 12 + 0 = 0
⟨ 2 , − 1 , − 2 ⟩ ⋅ ⟨ − 4 , 6 , − 7 ⟩ = − 8 − 6 + 14 = 0 ⟨ 2, -1 , -2⟩⋅⟨ -4 , 6, -7⟩ = -8 - 6 + 14= 0 ⟨ 2 , − 1 , − 2 ⟩ ⋅ ⟨ − 4 , 6 , − 7 ⟩ = − 8 − 6 + 14 = 0
Comments
Leave a comment