Question #176732

Identify the center and the radius of the circle with the equation 〖2x〗^2+〖2y〗^2+10x=2y+7 in each item. Sketch its graph, and indicate the center.


1
Expert's answer
2021-03-31T07:28:43-0400

(xa)2+(yb)2=r2isthecircleequationwitharadiusr,centeredat(a,b)\left(x−a\right)^2+\left(y−b\right)^2=r^2\:\:\mathrm{is\:the\:circle\:equation\:with\:a\:radius\:r,\:centered\:at}\:\left(a,\:b\right)

Rewriting 2x2+2y2+10x=2y+72x^2+2y^2+10x=2y+7 in form of standard circle equation

2x2+10x+2y22y=72x^2+10x+2y^2-2y=7

x2+5x+y2y=72x^2+5x+y^2-y=\frac{7}{2}

Writing the above equation in form of (xa)2+(yb)2=r2\left(x−a\right)^2+\left(y−b\right)^2=r^2

(x(52))2+(y12)2=(10)2\left(x-\left(-\frac{5}{2}\right)\right)^2+\left(y-\frac{1}{2}\right)^2=\left(\sqrt{10}\right)^2

(a,b)=(52,12),r=10\left(a,\:b\right)=\left(-\frac{5}{2},\:\frac{1}{2}\right),\:r=\sqrt{10}

Circlewithcenterat(52,12)andradiusr=10\mathrm{Circle\:with\:center\:at}\:\left(-\frac{5}{2},\:\frac{1}{2}\right)\:\mathrm{and\:radius}\:r=\sqrt{10}

Sketch its graph is below





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS