Let force F 1 = 80 N F_1=80N F 1 = 80 N
Let the force F 2 = 45 N F_2=45N F 2 = 45 N
The resultant of the two forces can be obtained using:
R 2 = F 1 2 + F 2 2 − 2 F 1 F 2 cos θ R^2 = F_1^2+F_2^2-2F_1F_2\cos\theta\\ R 2 = F 1 2 + F 2 2 − 2 F 1 F 2 cos θ
The angle formed between the two forces lies in the second quadrant. Thus the value of cos θ \cos\theta cos θ will be negative.
Thus:
R 2 = 8 0 2 + 4 5 2 − 2 × 80 × 45 × cos ( 180 ° − 100 ° ) R 2 = 6400 + 2025 − 7200 × cos 80 ° R 2 = 8425 − 7200 × 0.1737 R 2 = 8425 − 1 , 250.64 R 2 = 7 , 174.36 R = 7 , 174.36 R = 84.7 N R^2 = 80^2 + 45^2 - 2\times80\times45\times\cos(180\degree-100\degree)\\
R^2 = 6400 + 2025 -7200 \times \cos80\degree\\
R^2 = 8425 - 7200 \times 0.1737\\
R^2 = 8425 -1,250.64\\
R^2 = 7,174.36\\
R = \sqrt{7,174.36}\\
R = 84.7N R 2 = 8 0 2 + 4 5 2 − 2 × 80 × 45 × cos ( 180° − 100° ) R 2 = 6400 + 2025 − 7200 × cos 80° R 2 = 8425 − 7200 × 0.1737 R 2 = 8425 − 1 , 250.64 R 2 = 7 , 174.36 R = 7 , 174.36 R = 84.7 N
Comments