A conicoid given by equation a x 2 + b y 2 + c z 2 + 2 f y z + 2 g x z + 2 h x y + 2 u x + 2 v y + 2 w z + d = 0 ax^2+by^2+cz^2+2fyz+2gxz+2hxy+2ux+2vy+2wz+d=0 a x 2 + b y 2 + c z 2 + 2 f yz + 2 gx z + 2 h x y + 2 ux + 2 v y + 2 w z + d = 0
is central if the system
{ a x + h y + g z + u = 0 h x + b y + f z + v = 0 g x + f y + c z + w = 0 \begin{cases}
ax+hy+gz+u=0 \\
hx+by+fz+v=0 \\
gx+fy+cz+w=0
\end{cases} ⎩ ⎨ ⎧ a x + h y + g z + u = 0 h x + b y + f z + v = 0 gx + f y + cz + w = 0
has a unique solution ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) ( x 0 , y 0 , z 0 ) . In this case the point ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) ( x 0 , y 0 , z 0 ) is a center of the conicoid.
In our case, for a conicoid x 2 + 2 y 2 + 2 y z + 2 x + 4 y + 8 z + 1 = 0 x^2+2y^2+2yz+2x+4y+8z+1=0 x 2 + 2 y 2 + 2 yz + 2 x + 4 y + 8 z + 1 = 0 the system is the following:
{ x + 1 = 0 2 y + z + 2 = 0 y + 4 = 0 \begin{cases}
x+1=0 \\
2y+z+2=0 \\
y+4=0
\end{cases} ⎩ ⎨ ⎧ x + 1 = 0 2 y + z + 2 = 0 y + 4 = 0
It is equivalent to
{ x = − 1 y = − 4 z = 6 \begin{cases}
x=-1 \\
y=-4 \\
z=6
\end{cases} ⎩ ⎨ ⎧ x = − 1 y = − 4 z = 6
Therefore, the conicoid is central with center at O ′ ( − 1 , − 4 , 6 ) O'(-1,-4,6) O ′ ( − 1 , − 4 , 6 ) .
Let us find the new equation of the conicoid if the origin is shifted to its centre.
{ x = x ′ − 1 y = y ′ − 4 z = z ′ + 6 \begin{cases}
x=x'-1 \\
y=y'-4 \\
z=z'+6
\end{cases} ⎩ ⎨ ⎧ x = x ′ − 1 y = y ′ − 4 z = z ′ + 6
( x ′ − 1 ) 2 + 2 ( y ′ − 4 ) 2 + 2 ( y ′ − 4 ) ( z ′ + 6 ) + 2 ( x ′ − 1 ) + 4 ( y ′ − 4 ) + 8 ( z ′ + 6 ) + 1 = 0 (x'-1)^2+2(y'-4)^2+2(y'-4)(z'+6)+2(x'-1)+4(y'-4)+8(z'+6)+1=0 ( x ′ − 1 ) 2 + 2 ( y ′ − 4 ) 2 + 2 ( y ′ − 4 ) ( z ′ + 6 ) + 2 ( x ′ − 1 ) + 4 ( y ′ − 4 ) + 8 ( z ′ + 6 ) + 1 = 0
( x ′ ) 2 − 2 x ′ + 1 + 2 ( y ′ ) 2 − 16 y ′ + 32 + 2 y ′ z ′ + 12 y ′ − 8 z ′ − 48 + 2 x ′ − 2 + 4 y ′ − 16 + 8 z ′ + 48 + 1 = 0 (x')^2-2x'+1+2(y')^2-16y'+32+2y'z'+12y'-8z'-48+2x'-2+4y'-16+8z'+48+1=0 ( x ′ ) 2 − 2 x ′ + 1 + 2 ( y ′ ) 2 − 16 y ′ + 32 + 2 y ′ z ′ + 12 y ′ − 8 z ′ − 48 + 2 x ′ − 2 + 4 y ′ − 16 + 8 z ′ + 48 + 1 = 0
Therefore, the new equation of the conicoid if the origin is shifted to its centre is the following:
( x ′ ) 2 + 2 ( y ′ ) 2 + 2 y ′ z ′ + 16 = 0 (x')^2+2(y')^2+2y'z'+16=0 ( x ′ ) 2 + 2 ( y ′ ) 2 + 2 y ′ z ′ + 16 = 0
Comments