Given the vertex point p 0 = ( x 0 , y 0 , z 0 ) = ( 0 , 0 , 2 ) , p_0=(x_0,y_0,z_0)=(0,0,2), p 0 = ( x 0 , y 0 , z 0 ) = ( 0 , 0 , 2 ) , and p = ( x , y , z ) p=(x,y,z) p = ( x , y , z )
the support circle in the x y xy x y plane is x 2 + y 2 = r 2 x^2+y^2=r^2 x 2 + y 2 = r 2 with r = 3. r=3. r = 3.
The generatrix line is given as x − x 0 l = y − y 0 m = z − z 0 n \frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n} l x − x 0 = m y − y 0 = n z − z 0 so its intersection with the x y xy x y plane is given by
( x 0 − z 0 l n , y 0 − z 0 m n , 0 ) (x_0-z_0\frac{l}{n},y_0-z_0\frac{m}{n},0) ( x 0 − z 0 n l , y 0 − z 0 n m , 0 )
so this point will lie on the given circle ( x 0 − z 0 l n ) 2 + ( y 0 − z 0 m n ) 2 = r 2 (x_0-z_0\frac{l}{n})^2+(y_0-z_0\frac{m}{n})^2=r^2 ( x 0 − z 0 n l ) 2 + ( y 0 − z 0 n m ) 2 = r 2 .
Here we have ( 2 l n ) 2 + ( 2 m n ) 2 = 9 (2\frac{l}{n})^2+(2\frac{m}{n})^2=9 ( 2 n l ) 2 + ( 2 n m ) 2 = 9
but { l = x k m = y k n = z − 2 k \begin{cases}l=\frac{x}{k}\\m=\frac{y}{k}\\n=\frac{z-2}{k} \end{cases} ⎩ ⎨ ⎧ l = k x m = k y n = k z − 2 substituting
( 2 x z − 2 ) 2 + ( 2 y z − 2 ) 2 = 9 (2\frac{x}{z-2})^2+(2\frac{y}{z-2})^2=9 ( 2 z − 2 x ) 2 + ( 2 z − 2 y ) 2 = 9
and finally
x 2 9 + y 2 9 − ( z − 2 ) 2 4 = 0 \frac{x^2}{9}+\frac{y^2}{9}-\frac{(z-2)^2}{4}=0 9 x 2 + 9 y 2 − 4 ( z − 2 ) 2 = 0 .
Comments