The equation of the line is "\\begin{cases}\n7x-6y+9=0\n\\\\\nz=3\n\\end{cases}\n\\quad\n\\begin{cases}\nx=\\frac{6t-9}{7}\n\\\\\ny=t\n\\\\\nz=3\n\\end{cases}"
If the plane "ax+by+cz+d=0" passes through this line, then
"a\\frac{6t-9}{7}+bt+3c+d=(6a\/7+b)t+(3c+d-9a\/7)=0"
It means, that "\\begin{cases}\n6a\/7+b=0\n\\\\\n3c+d-9a\/7=0\n\\end{cases}\n\\quad\n\\begin{cases}\na=7\\alpha \n\\\\\nb=-6\\alpha \n\\\\\nc=\\beta\n\\\\\nd=9\\alpha-3\\beta \n\\end{cases}"
So, we have the equation of this plane "7\\alpha x-6\\alpha y+\\beta z+(9\\alpha -3\\beta)=0"
Let "7\\alpha x-6\\alpha y+\\beta z+(9\\alpha -3\\beta)=0" be the equation of the tangent plane to the conicoid "7x^2-3y^2-z^2+21=0" at the point "P(x_0,y_0,z_0)" .
The point "P(x_0,y_0,z_0)" is on the conicoid: "7x_0^2-3y_0^2-z_0^2+21=0" .
The equation of the tangent plane is "f_x|_P(x-x_0) +f_y|_P(y-y_0)+f_z|_P(z-z_0)=0" , where "f(x,y,z)=7x^2-3y^2-z^2+21"
We have "14x_0(x-x_0)-6y_0(y-y_0)-2z_0(z-z_0)=0"
"2(7xx_0-3yy_0-zz_0+21)-2(7x_0^2-3y_0^2-z_0^2+21)=0"
Therefore, "7xx_0-3yy_0-zz_0+21=0" is the equation of the tangent plane at "P(x_0,y_0,z_0)" .
Using the fact that "7xx_0-3yy_0-zz_0+21=0" and "7\\alpha x-6\\alpha y+\\beta z+(9\\alpha -3\\beta)=0" are equations of the same plane, we get
"\\begin{cases}\nx_0=\\alpha \n\\\\\ny_0=2\\alpha\n\\\\\nz_0=-\\beta \n\\\\\n9\\alpha -3\\beta=21\n\\end{cases}\n\\quad\n\\begin{cases}\nx_0=\\alpha \n\\\\\ny_0=2\\alpha\n\\\\\nz_0=7-3\\alpha \n\\\\\n\\beta=3\\alpha -7\n\\end{cases}"
Substituting "(x_0,y_0,z_0)" into "f(x_0,y_0,z_0)=0" , we get "7\\alpha ^2-12\\alpha ^2-(3\\alpha-7)^2+21=-14\\alpha^2+42\\alpha -28=0"
There are 2 roots of this equation: "\\alpha _1=1" , "\\alpha_2 =2" . Then we get "\\beta_1=-4" and "\\beta_2=-1" .
Therefore, we have two planes: "7x-6y-4z+21=0" and "14x-12y-z+21=0" .
Answer: "7x-6y-4z+21=0" and "14x-12y-z+21=0."
Comments
Leave a comment