Question #145009
Find the equations of the tangent planes to the conicoid 7x^2-3y^2-z^2+21=0, which pass through the line 7x-6y+9=0, z=3
1
Expert's answer
2020-11-17T17:46:52-0500

The equation of the line is {7x6y+9=0z=3{x=6t97y=tz=3\begin{cases} 7x-6y+9=0 \\ z=3 \end{cases} \quad \begin{cases} x=\frac{6t-9}{7} \\ y=t \\ z=3 \end{cases}

If the plane ax+by+cz+d=0ax+by+cz+d=0 passes through this line, then

a6t97+bt+3c+d=(6a/7+b)t+(3c+d9a/7)=0a\frac{6t-9}{7}+bt+3c+d=(6a/7+b)t+(3c+d-9a/7)=0

It means, that {6a/7+b=03c+d9a/7=0{a=7αb=6αc=βd=9α3β\begin{cases} 6a/7+b=0 \\ 3c+d-9a/7=0 \end{cases} \quad \begin{cases} a=7\alpha \\ b=-6\alpha \\ c=\beta \\ d=9\alpha-3\beta \end{cases}

So, we have the equation of this plane 7αx6αy+βz+(9α3β)=07\alpha x-6\alpha y+\beta z+(9\alpha -3\beta)=0


Let 7αx6αy+βz+(9α3β)=07\alpha x-6\alpha y+\beta z+(9\alpha -3\beta)=0 be the equation of the tangent plane to the conicoid 7x23y2z2+21=07x^2-3y^2-z^2+21=0 at the point P(x0,y0,z0)P(x_0,y_0,z_0) .

The point P(x0,y0,z0)P(x_0,y_0,z_0) is on the conicoid: 7x023y02z02+21=07x_0^2-3y_0^2-z_0^2+21=0 .

The equation of the tangent plane is fxP(xx0)+fyP(yy0)+fzP(zz0)=0f_x|_P(x-x_0) +f_y|_P(y-y_0)+f_z|_P(z-z_0)=0 , where f(x,y,z)=7x23y2z2+21f(x,y,z)=7x^2-3y^2-z^2+21

We have 14x0(xx0)6y0(yy0)2z0(zz0)=014x_0(x-x_0)-6y_0(y-y_0)-2z_0(z-z_0)=0

2(7xx03yy0zz0+21)2(7x023y02z02+21)=02(7xx_0-3yy_0-zz_0+21)-2(7x_0^2-3y_0^2-z_0^2+21)=0

Therefore, 7xx03yy0zz0+21=07xx_0-3yy_0-zz_0+21=0 is the equation of the tangent plane at P(x0,y0,z0)P(x_0,y_0,z_0) .


Using the fact that 7xx03yy0zz0+21=07xx_0-3yy_0-zz_0+21=0 and 7αx6αy+βz+(9α3β)=07\alpha x-6\alpha y+\beta z+(9\alpha -3\beta)=0 are equations of the same plane, we get

{x0=αy0=2αz0=β9α3β=21{x0=αy0=2αz0=73αβ=3α7\begin{cases} x_0=\alpha \\ y_0=2\alpha \\ z_0=-\beta \\ 9\alpha -3\beta=21 \end{cases} \quad \begin{cases} x_0=\alpha \\ y_0=2\alpha \\ z_0=7-3\alpha \\ \beta=3\alpha -7 \end{cases}


Substituting (x0,y0,z0)(x_0,y_0,z_0) into f(x0,y0,z0)=0f(x_0,y_0,z_0)=0 , we get 7α212α2(3α7)2+21=14α2+42α28=07\alpha ^2-12\alpha ^2-(3\alpha-7)^2+21=-14\alpha^2+42\alpha -28=0

There are 2 roots of this equation: α1=1\alpha _1=1 , α2=2\alpha_2 =2 . Then we get β1=4\beta_1=-4 and β2=1\beta_2=-1 .


Therefore, we have two planes: 7x6y4z+21=07x-6y-4z+21=0 and 14x12yz+21=014x-12y-z+21=0 .


Answer: 7x6y4z+21=07x-6y-4z+21=0 and 14x12yz+21=0.14x-12y-z+21=0.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS