The equation of the line is { 7 x − 6 y + 9 = 0 z = 3 { x = 6 t − 9 7 y = t z = 3 \begin{cases}
7x-6y+9=0
\\
z=3
\end{cases}
\quad
\begin{cases}
x=\frac{6t-9}{7}
\\
y=t
\\
z=3
\end{cases} { 7 x − 6 y + 9 = 0 z = 3 ⎩ ⎨ ⎧ x = 7 6 t − 9 y = t z = 3
If the plane a x + b y + c z + d = 0 ax+by+cz+d=0 a x + b y + cz + d = 0 passes through this line, then
a 6 t − 9 7 + b t + 3 c + d = ( 6 a / 7 + b ) t + ( 3 c + d − 9 a / 7 ) = 0 a\frac{6t-9}{7}+bt+3c+d=(6a/7+b)t+(3c+d-9a/7)=0 a 7 6 t − 9 + b t + 3 c + d = ( 6 a /7 + b ) t + ( 3 c + d − 9 a /7 ) = 0
It means, that { 6 a / 7 + b = 0 3 c + d − 9 a / 7 = 0 { a = 7 α b = − 6 α c = β d = 9 α − 3 β \begin{cases}
6a/7+b=0
\\
3c+d-9a/7=0
\end{cases}
\quad
\begin{cases}
a=7\alpha
\\
b=-6\alpha
\\
c=\beta
\\
d=9\alpha-3\beta
\end{cases} { 6 a /7 + b = 0 3 c + d − 9 a /7 = 0 ⎩ ⎨ ⎧ a = 7 α b = − 6 α c = β d = 9 α − 3 β
So, we have the equation of this plane 7 α x − 6 α y + β z + ( 9 α − 3 β ) = 0 7\alpha x-6\alpha y+\beta z+(9\alpha -3\beta)=0 7 αx − 6 α y + β z + ( 9 α − 3 β ) = 0
Let 7 α x − 6 α y + β z + ( 9 α − 3 β ) = 0 7\alpha x-6\alpha y+\beta z+(9\alpha -3\beta)=0 7 αx − 6 α y + β z + ( 9 α − 3 β ) = 0 be the equation of the tangent plane to the conicoid 7 x 2 − 3 y 2 − z 2 + 21 = 0 7x^2-3y^2-z^2+21=0 7 x 2 − 3 y 2 − z 2 + 21 = 0 at the point P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P ( x 0 , y 0 , z 0 ) .
The point P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P ( x 0 , y 0 , z 0 ) is on the conicoid: 7 x 0 2 − 3 y 0 2 − z 0 2 + 21 = 0 7x_0^2-3y_0^2-z_0^2+21=0 7 x 0 2 − 3 y 0 2 − z 0 2 + 21 = 0 .
The equation of the tangent plane is f x ∣ P ( x − x 0 ) + f y ∣ P ( y − y 0 ) + f z ∣ P ( z − z 0 ) = 0 f_x|_P(x-x_0) +f_y|_P(y-y_0)+f_z|_P(z-z_0)=0 f x ∣ P ( x − x 0 ) + f y ∣ P ( y − y 0 ) + f z ∣ P ( z − z 0 ) = 0 , where f ( x , y , z ) = 7 x 2 − 3 y 2 − z 2 + 21 f(x,y,z)=7x^2-3y^2-z^2+21 f ( x , y , z ) = 7 x 2 − 3 y 2 − z 2 + 21
We have 14 x 0 ( x − x 0 ) − 6 y 0 ( y − y 0 ) − 2 z 0 ( z − z 0 ) = 0 14x_0(x-x_0)-6y_0(y-y_0)-2z_0(z-z_0)=0 14 x 0 ( x − x 0 ) − 6 y 0 ( y − y 0 ) − 2 z 0 ( z − z 0 ) = 0
2 ( 7 x x 0 − 3 y y 0 − z z 0 + 21 ) − 2 ( 7 x 0 2 − 3 y 0 2 − z 0 2 + 21 ) = 0 2(7xx_0-3yy_0-zz_0+21)-2(7x_0^2-3y_0^2-z_0^2+21)=0 2 ( 7 x x 0 − 3 y y 0 − z z 0 + 21 ) − 2 ( 7 x 0 2 − 3 y 0 2 − z 0 2 + 21 ) = 0
Therefore, 7 x x 0 − 3 y y 0 − z z 0 + 21 = 0 7xx_0-3yy_0-zz_0+21=0 7 x x 0 − 3 y y 0 − z z 0 + 21 = 0 is the equation of the tangent plane at P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P ( x 0 , y 0 , z 0 ) .
Using the fact that 7 x x 0 − 3 y y 0 − z z 0 + 21 = 0 7xx_0-3yy_0-zz_0+21=0 7 x x 0 − 3 y y 0 − z z 0 + 21 = 0 and 7 α x − 6 α y + β z + ( 9 α − 3 β ) = 0 7\alpha x-6\alpha y+\beta z+(9\alpha -3\beta)=0 7 αx − 6 α y + β z + ( 9 α − 3 β ) = 0 are equations of the same plane, we get
{ x 0 = α y 0 = 2 α z 0 = − β 9 α − 3 β = 21 { x 0 = α y 0 = 2 α z 0 = 7 − 3 α β = 3 α − 7 \begin{cases}
x_0=\alpha
\\
y_0=2\alpha
\\
z_0=-\beta
\\
9\alpha -3\beta=21
\end{cases}
\quad
\begin{cases}
x_0=\alpha
\\
y_0=2\alpha
\\
z_0=7-3\alpha
\\
\beta=3\alpha -7
\end{cases} ⎩ ⎨ ⎧ x 0 = α y 0 = 2 α z 0 = − β 9 α − 3 β = 21 ⎩ ⎨ ⎧ x 0 = α y 0 = 2 α z 0 = 7 − 3 α β = 3 α − 7
Substituting ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) ( x 0 , y 0 , z 0 ) into f ( x 0 , y 0 , z 0 ) = 0 f(x_0,y_0,z_0)=0 f ( x 0 , y 0 , z 0 ) = 0 , we get 7 α 2 − 12 α 2 − ( 3 α − 7 ) 2 + 21 = − 14 α 2 + 42 α − 28 = 0 7\alpha ^2-12\alpha ^2-(3\alpha-7)^2+21=-14\alpha^2+42\alpha -28=0 7 α 2 − 12 α 2 − ( 3 α − 7 ) 2 + 21 = − 14 α 2 + 42 α − 28 = 0
There are 2 roots of this equation: α 1 = 1 \alpha _1=1 α 1 = 1 , α 2 = 2 \alpha_2 =2 α 2 = 2 . Then we get β 1 = − 4 \beta_1=-4 β 1 = − 4 and β 2 = − 1 \beta_2=-1 β 2 = − 1 .
Therefore, we have two planes: 7 x − 6 y − 4 z + 21 = 0 7x-6y-4z+21=0 7 x − 6 y − 4 z + 21 = 0 and 14 x − 12 y − z + 21 = 0 14x-12y-z+21=0 14 x − 12 y − z + 21 = 0 .
Answer: 7 x − 6 y − 4 z + 21 = 0 7x-6y-4z+21=0 7 x − 6 y − 4 z + 21 = 0 and 14 x − 12 y − z + 21 = 0. 14x-12y-z+21=0. 14 x − 12 y − z + 21 = 0.
Comments