"\\displaystyle\n\n\n\\frac{2}{r}= 3\\cos\\left(\\theta -\\frac{\\pi}{4}\\right)\n+ 2\\sin\\left(\\theta +\\frac{\\pi}{4}\\right)\\\\\n\nr = \\frac{2}{3\\cos\\left(\\theta -\\frac{\\pi}{4}\\right)\n+ 2\\sin\\left(\\theta +\\frac{\\pi}{4}\\right)}\\\\\n\n\\cos\\left(\\frac{\\pi}{2} - \\theta\\right) = \\sin{\\theta}\\\\\n\nr = \\frac{2}{3\\sin\\left(-\\theta + \\frac{3\\pi}{4}\\right)\n+ 2\\sin\\left(\\theta +\\frac{\\pi}{4}\\right)}\\\\\n\n\n\\sin{\\theta} = \\sin(\\pi - \\theta)\\\\\n\nr = \\frac{2}{3\\sin\\left(\\theta + \\frac{\\pi}{4}\\right)\n+ 2\\sin\\left(\\theta +\\frac{\\pi}{4}\\right)}\\\\\n\n\n\nr = \\frac{2}{5\\sin\\left(\\theta + \\frac{\\pi}{4}\\right)}\\\\\n\n\nr^2 = \\frac{4}{25\\sin^2\\left(\\theta + \\frac{\\pi}{4}\\right)}\\\\\n\n\nx^2 + y^2 = \\frac{4}{25\\sin^2\\left(\\theta + \\frac{\\pi}{4}\\right)}\\\\\n\n\nx^2 + y^2 = \\frac{8}{25\\left(1 - \\cos\\left(2\\theta + \\frac{\\pi}{2}\\right)\\right)}\\\\\n\n\nx^2 + y^2 = \\frac{8}{25\\left(1 + \\sin(2\\theta)\\right)}\\\\\n\n\nx^2 + y^2 = \\frac{8}{25\\left(1 + 2\\sin{\\theta}\\cos{\\theta}\\right)}\\\\\n\nx = r\\cos\\theta, y = r\\sin\\theta\\\\\n\nx^2 + y^2 = \\frac{8}{25\\left(1 + \\frac{2xy}{r^2}\n\\right)}\\\\\n\n\nx^2 + y^2 = \\frac{8(x^2 + y^2)}{25\\left(x^2 + y^2 + 2xy\n\\right)}\\\\\n\n\n\n1 = \\frac{8}{25\\left(x^2 + y^2 + 2xy\n\\right)}\\\\\n\n\nx^2 + y^2 + 2xy = \\frac{8}{25}\\\\\n\n\n(x + y)^2 = \\frac{8}{25}\\\\\n\n\nx + y = \\pm\\frac{2\\sqrt{2}}{5}\\\\\n\n\n\\textsf{This is of course the}\\\\\n\\textsf{equation of a straight line.}\\\\\n\n\n\n\n\\textsf{A plot is attached above}"
Comments
Leave a comment