For this solve the following system:
"\\begin{cases} (x-1)^2+(y-3)^2=10 \\\\ x^2+(y-1)^2=5 \\end{cases}"
"\\begin{cases} x^2-2x+1+y^2-6y+9=10 \\\\ x^2+y^2-2y+1=5 \\end{cases}"
"\\begin{cases} x^2+y^2=2x+6y \\\\ x^2+y^2-2y=4 \\end{cases}"
"\\begin{cases} x^2+y^2=2x+6y \\\\ 2x+6y-2y=4 \\end{cases}"
"\\begin{cases} x^2+y^2=2x+6y \\\\ x=2-2y \\end{cases}"
"\\begin{cases} (2-2y )^2+y^2=2(2-2y )+6y \\\\ x=2-2y \\end{cases}"
"\\begin{cases} 4-8y+4y^2+y^2=4-4y+6y \\\\ x=2-2y \\end{cases}"
"\\begin{cases} 5y^2-10y=0 \\\\ x=2-2y \\end{cases}"
"\\begin{cases} 5y(y-2)=0 \\\\ x=2-2y \\end{cases}"
"\\begin{cases} y=0 \\\\ x=2 \\end{cases} \\ \\ \\ \\text{or} \\ \\ \\ \\begin{cases} y=2 \\\\ x=-2 \\end{cases}"
Therefore, the intersection point of the given two circles is "A(2,0)" and "B(-2,2)."
Comments
Leave a comment