Answer to Question #138203 in Analytic Geometry for Sanchayie

Question #138203
Find the intersection point of the given two circles
(x-1)²+(y-3)²=10 and x²+(y-1)²=5
1
Expert's answer
2020-10-14T11:04:32-0400

For this solve the following system:


{(x1)2+(y3)2=10x2+(y1)2=5\begin{cases} (x-1)^2+(y-3)^2=10 \\ x^2+(y-1)^2=5 \end{cases}


{x22x+1+y26y+9=10x2+y22y+1=5\begin{cases} x^2-2x+1+y^2-6y+9=10 \\ x^2+y^2-2y+1=5 \end{cases}


{x2+y2=2x+6yx2+y22y=4\begin{cases} x^2+y^2=2x+6y \\ x^2+y^2-2y=4 \end{cases}


{x2+y2=2x+6y2x+6y2y=4\begin{cases} x^2+y^2=2x+6y \\ 2x+6y-2y=4 \end{cases}


{x2+y2=2x+6yx=22y\begin{cases} x^2+y^2=2x+6y \\ x=2-2y \end{cases}


{(22y)2+y2=2(22y)+6yx=22y\begin{cases} (2-2y )^2+y^2=2(2-2y )+6y \\ x=2-2y \end{cases}


{48y+4y2+y2=44y+6yx=22y\begin{cases} 4-8y+4y^2+y^2=4-4y+6y \\ x=2-2y \end{cases}


{5y210y=0x=22y\begin{cases} 5y^2-10y=0 \\ x=2-2y \end{cases}


{5y(y2)=0x=22y\begin{cases} 5y(y-2)=0 \\ x=2-2y \end{cases}


{y=0x=2   or   {y=2x=2\begin{cases} y=0 \\ x=2 \end{cases} \ \ \ \text{or} \ \ \ \begin{cases} y=2 \\ x=-2 \end{cases}


Therefore, the intersection point of the given two circles is A(2,0)A(2,0) and B(2,2).B(-2,2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment