For this solve the following system:
{(x−1)2+(y−3)2=10x2+(y−1)2=5
{x2−2x+1+y2−6y+9=10x2+y2−2y+1=5
{x2+y2=2x+6yx2+y2−2y=4
{x2+y2=2x+6y2x+6y−2y=4
{x2+y2=2x+6yx=2−2y
{(2−2y)2+y2=2(2−2y)+6yx=2−2y
{4−8y+4y2+y2=4−4y+6yx=2−2y
{5y2−10y=0x=2−2y
{5y(y−2)=0x=2−2y
{y=0x=2 or {y=2x=−2
Therefore, the intersection point of the given two circles is A(2,0) and B(−2,2).
Comments
Leave a comment