"\\alpha =2i-3j+k, \\ \\ \\beta =7i-5j+k"
The cross product "\\alpha \\times \\beta" is a vector that is perpendicular to both "\\alpha" and "\\beta" .
"\\gamma =\\alpha \\times \\beta =\\begin{vmatrix}\ni&j&k\n\\\\ 2&-3&1\\\\7&-5&1\n\\end{vmatrix}=(-3\\times 1-(-5)\\times 1)i-(2\\times 1-7\\times 1)j+(2\\times (-5)-7(-3))k=2i+5j+11k"
"|\\gamma|=\\sqrt{2^2+5^2+11^2}=\\sqrt{150}=5\\sqrt6"
Unit vector is "\\frac{\\gamma}{|\\gamma|}" .
Answer: "\\frac{2i+5j+11k}{5\\sqrt6}" a unit vector perpendicular to "\\alpha" and "\\beta" respectively.
Comments
Leave a comment