The equation of the ellipsoid is "\\dfrac{x^2}{9}+\\dfrac{y^2}{4}+z^2=1".
Equation of normal at any point "P=(x_0,y_0,z_0)" to the ellipsoid "ax^2+by^2+cz^2=1" is "\\frac{x-x_0}{ax_0}=\\frac{y-y_0}{by_0}=\\frac{z-z_0}{cz_0}".
For the given ellipsoid "a=\\frac{1}{9} ; b=\\frac{1}{4} ; c=1".
​So, equation of normal at any point "P=(x_0,y_0,z_0)" to the given ellipsoid is
"\\frac{9(x-x_0)}{x_0}=\\frac{4(y-y_0)}{y_0}=\\frac{z-z_0}{z_0}"
When "x=0;" Equation of normal becomes "-9=\\frac{4(y-y_0)}{y_0}=\\frac{z-z_0}{z_0}"
"\\implies y=\\frac{-5y_o}{4};z=-8z_o"
Hence, "Q_1=(0,\\frac{-5y_o}{4},-8z_o)".
When "y=0; x=\\frac{5x_o}{9};z=-3z_o" "\\implies Q_2=(\\frac{5x_o}{9},0,-3z_o)".
When "z=0;x=8x_o\/9;y=3y_o\/4" "\\implies Q_3=(\\frac{8x_o}{9},\\frac{3y_o}{4},0)".
Hence "PQ_1\n\n\u200b=\\sqrt{(x_o)^2+(y_0-\\frac{-5y_o}{4})^2+(z_0 + 8z_o)^2} = (\\sqrt{16x_o^2+81y_o^2+36^2z_o^2})\/4"
"PQ_2=\\sqrt{(\\frac{4x_o}{9})^2+(y_o)^2+(4z_o)^2} \n\u200b\t\n = (\\sqrt{16x_o^2\u200b +81y_0^2+36^2 z_0^2) }\/9"
and "PQ_3 \u200b=\\sqrt{(x_o - \\frac{8x_0}{9})^2+(y_0-\\frac{3y_o}{4})^2+z_0 ^2} = (\\sqrt{16x_o^2+81y_o^2+36^2z_o^2})\/36" .
Thus "PQ_1\n\n\u200b:PQ_2\n\n\u200b:PQ_3\n\n\u200b=1\/4:1\/9:1\/36"
"\\implies PQ_1\n\n\u200b:PQ_2\n\n\u200b:PQ_3\n\n\u200b=9:4:1"
Comments
Leave a comment