Question #114946
The normals at any point P of the ellipsoid x^2/9 +y^2+4 +z^2 = 1 meet the coordinate planes in Q1,Q2,Q3, respectively. Show that PQ1 : PQ2 : PQ3 :: 9 : 4 : 1.
1
Expert's answer
2020-05-19T18:58:48-0400

The equation of the ellipsoid is x29+y24+z2=1\dfrac{x^2}{9}+\dfrac{y^2}{4}+z^2=1.

Equation of normal at any point P=(x0,y0,z0)P=(x_0,y_0,z_0) to the ellipsoid ax2+by2+cz2=1ax^2+by^2+cz^2=1 is xx0ax0=yy0by0=zz0cz0\frac{x-x_0}{ax_0}=\frac{y-y_0}{by_0}=\frac{z-z_0}{cz_0}.

For the given ellipsoid a=19;b=14;c=1a=\frac{1}{9} ; b=\frac{1}{4} ; c=1.

​So, equation of normal at any point P=(x0,y0,z0)P=(x_0,y_0,z_0) to the given ellipsoid is

9(xx0)x0=4(yy0)y0=zz0z0\frac{9(x-x_0)}{x_0}=\frac{4(y-y_0)}{y_0}=\frac{z-z_0}{z_0}


When x=0;x=0; Equation of normal becomes 9=4(yy0)y0=zz0z0-9=\frac{4(y-y_0)}{y_0}=\frac{z-z_0}{z_0}

    y=5yo4;z=8zo\implies y=\frac{-5y_o}{4};z=-8z_o

Hence, Q1=(0,5yo4,8zo)Q_1=(0,\frac{-5y_o}{4},-8z_o).

When y=0;x=5xo9;z=3zoy=0; x=\frac{5x_o}{9};z=-3z_o     Q2=(5xo9,0,3zo)\implies Q_2=(\frac{5x_o}{9},0,-3z_o).

When z=0;x=8xo/9;y=3yo/4z=0;x=8x_o/9;y=3y_o/4     Q3=(8xo9,3yo4,0)\implies Q_3=(\frac{8x_o}{9},\frac{3y_o}{4},0).


Hence PQ1=(xo)2+(y05yo4)2+(z0+8zo)2=(16xo2+81yo2+362zo2)/4PQ_1 ​=\sqrt{(x_o)^2+(y_0-\frac{-5y_o}{4})^2+(z_0 + 8z_o)^2} = (\sqrt{16x_o^2+81y_o^2+36^2z_o^2})/4

PQ2=(4xo9)2+(yo)2+(4zo)2=(16xo2+81y02+362z02)/9PQ_2=\sqrt{(\frac{4x_o}{9})^2+(y_o)^2+(4z_o)^2} ​ = (\sqrt{16x_o^2​ +81y_0^2+36^2 z_0^2) }/9

and PQ3=(xo8x09)2+(y03yo4)2+z02=(16xo2+81yo2+362zo2)/36PQ_3 ​=\sqrt{(x_o - \frac{8x_0}{9})^2+(y_0-\frac{3y_o}{4})^2+z_0 ^2} = (\sqrt{16x_o^2+81y_o^2+36^2z_o^2})/36 .


Thus PQ1:PQ2:PQ3=1/4:1/9:1/36PQ_1 ​:PQ_2 ​:PQ_3 ​=1/4:1/9:1/36

    PQ1:PQ2:PQ3=9:4:1\implies PQ_1 ​:PQ_2 ​:PQ_3 ​=9:4:1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS