Given f ( x , y , z ) = x 2 − 2 y 2 + 2 z 2 − 8 = 0 f(x,y,z)=x^{2}-2y^{2}+2z^{2}-8=0 f ( x , y , z ) = x 2 − 2 y 2 + 2 z 2 − 8 = 0 with point P ( a , b , c ) P(a,b,c) P ( a , b , c ) .
⟹ a 2 − 2 b 2 + 2 c 2 − 8 = 0 \implies a^{2}-2b^{2}+2c^{2}-8=0 ⟹ a 2 − 2 b 2 + 2 c 2 − 8 = 0
Now ( f x , f y , f z ) = ( 2 x , − 4 y , 4 z ) (f_{x},f_{y},f_{z})=(2x,-4y,4z) ( f x , f y , f z ) = ( 2 x , − 4 y , 4 z ) and so at point P it is: ( 2 a , − 4 b , 4 c ) (2a,-4b,4c) ( 2 a , − 4 b , 4 c ) .
So, Equation of the tangent plane is 2 a ( x − a ) − 4 b ( y − b ) + 4 c ( z − c ) = 0 2a(x-a)-4b(y-b)+4c(z-c)=0 2 a ( x − a ) − 4 b ( y − b ) + 4 c ( z − c ) = 0
⟹ a x − 2 b y + 2 c z = 8 \implies ax−2by+2cz=8 ⟹ a x − 2 b y + 2 cz = 8
The system 2 x + 3 y + 2 z = 8 , x − y + 2 z = 5 2x+3y+2z = 8, x-y+2z=5 2 x + 3 y + 2 z = 8 , x − y + 2 z = 5 is a line, we choose points on the line.
The points (3,0,1) and ( − 1 , 1 , 7 2 ) (-1,1,\frac{7}{2}) ( − 1 , 1 , 2 7 ) of the given line must lie in this tangent plane,
then we have c = 8 − 3 a 2 c=\frac{8-3a}{2} c = 2 8 − 3 a and b = 40 − 23 a 4 b=\frac{40-23a}{4} b = 4 40 − 23 a .
Using the equation a 2 − 2 b 2 + 2 c 2 − 8 = 0 a^{2}-2b^{2}+2c^{2}-8=0 a 2 − 2 b 2 + 2 c 2 − 8 = 0
⟹ a 2 − ( 40 − 23 a ) 2 8 + ( 8 − 3 a ) 2 2 − 8 = 0 \implies a^2-\frac{\left(40-23a\right)^2}{8}+\frac{\left(8-3a\right)^2}{2}-8\:=0 ⟹ a 2 − 8 ( 40 − 23 a ) 2 + 2 ( 8 − 3 a ) 2 − 8 = 0 ,
⟹ − 485 a 2 + 1648 a − 1408 = 0 \implies -485a^2+1648a-1408=0 ⟹ − 485 a 2 + 1648 a − 1408 = 0
⟹ a = 824 485 − i 8 61 485 , a = 824 485 + i 8 61 485 \implies a=\frac{824}{485}-i\frac{8\sqrt{61}}{485},\:a=\frac{824}{485}+i\frac{8\sqrt{61}}{485} ⟹ a = 485 824 − i 485 8 61 , a = 485 824 + i 485 8 61
we do not find a real solution for a.
Answer: The tangent plane does not exist.
Comments