Question #114940
Does there exist a plane targent to
x^2 −2y^2 +2z^2 = 8 and which passes through 2x+3y+2z = 8, x−y+2z = 5? Justify your answer.
1
Expert's answer
2020-05-18T18:49:14-0400

Given f(x,y,z)=x22y2+2z28=0f(x,y,z)=x^{2}-2y^{2}+2z^{2}-8=0  with point P(a,b,c)P(a,b,c) .

    a22b2+2c28=0\implies a^{2}-2b^{2}+2c^{2}-8=0

Now (fx,fy,fz)=(2x,4y,4z)(f_{x},f_{y},f_{z})=(2x,-4y,4z) and so at point P it is: (2a,4b,4c)(2a,-4b,4c) .

So, Equation of the tangent plane is 2a(xa)4b(yb)+4c(zc)=02a(x-a)-4b(y-b)+4c(z-c)=0

    ax2by+2cz=8\implies ax−2by+2cz=8

The system 2x+3y+2z=8,xy+2z=52x+3y+2z = 8, x-y+2z=5  is a line, we choose points on the line.

The points (3,0,1) and (1,1,72)(-1,1,\frac{7}{2})  of the given line must lie in this tangent plane,

then we have c=83a2c=\frac{8-3a}{2}​ and b=4023a4b=\frac{40-23a}{4} .

Using the equation a22b2+2c28=0a^{2}-2b^{2}+2c^{2}-8=0

    a2(4023a)28+(83a)228=0\implies a^2-\frac{\left(40-23a\right)^2}{8}+\frac{\left(8-3a\right)^2}{2}-8\:=0,

    485a2+1648a1408=0\implies -485a^2+1648a-1408=0

    a=824485i861485,a=824485+i861485\implies a=\frac{824}{485}-i\frac{8\sqrt{61}}{485},\:a=\frac{824}{485}+i\frac{8\sqrt{61}}{485}

we do not find a real solution for a.

Answer: The tangent plane does not exist.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS