Given "f(x,y,z)=x^{2}-2y^{2}+2z^{2}-8=0"  with point "P(a,b,c)" .
"\\implies a^{2}-2b^{2}+2c^{2}-8=0"
Now "(f_{x},f_{y},f_{z})=(2x,-4y,4z)" and so at point P it is: "(2a,-4b,4c)" .
So, Equation of the tangent plane is "2a(x-a)-4b(y-b)+4c(z-c)=0"
"\\implies ax\u22122by+2cz=8"
The system "2x+3y+2z = 8, x-y+2z=5"  is a line, we choose points on the line.
The points (3,0,1) and "(-1,1,\\frac{7}{2})"  of the given line must lie in this tangent plane,
then we have "c=\\frac{8-3a}{2}"​ and "b=\\frac{40-23a}{4}" .
Using the equation "a^{2}-2b^{2}+2c^{2}-8=0"
"\\implies a^2-\\frac{\\left(40-23a\\right)^2}{8}+\\frac{\\left(8-3a\\right)^2}{2}-8\\:=0",
"\\implies -485a^2+1648a-1408=0"
"\\implies a=\\frac{824}{485}-i\\frac{8\\sqrt{61}}{485},\\:a=\\frac{824}{485}+i\\frac{8\\sqrt{61}}{485}"
we do not find a real solution for a.
Answer: The tangent plane does not exist.
Comments
Leave a comment